KEITHLEY
 Model 2000 Multimeter Repair Manual

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 3 years from date of shipment.
Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.
During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.
To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley's express written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.
THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE
REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.
NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRUMENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

KEITHLEY

Keithley Instruments, Inc.

Sales Offices:	BELGIUM:	Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw •02-363 $0040 \cdot$ Fax: 02/363 0064
	CHINA:	Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
	FINLAND:	Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 750810 • Fax: 09-25 105100
	FRANCE:	3, allée des Garays • 91127 Palaiseau Cédex •01-64 $532020 \cdot$ Fax: 01-60 117726
	GERMANY:	Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
	GREAT BRITAIN:	Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 01189297500 • Fax: 01189297519
	INDIA:	Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560001 • 91-80-509-1320/21 • Fax: 91-80-509-1322
	ITALY:	Viale San Gimignano, 38 • 20146 Milano • 02-48 391601 • Fax: 02-48 302274
	JAPAN:	New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556
	KOREA:	2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838
	NETHERLANDS:	Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
	SWEDEN:	c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 16970 Solna • 08-509 04679 • Fax: 08-655 2610
	SWITZERLAND:	Kriesbachstrasse 4•8600 Dübendorf • 01-82194 44 • Fax: 01-820 3081
	TAIWAN:	1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 1-888-KEITHLEY (534-8453) • www.keithley.com

Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 0040 • Fax: 02/363 0064
Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 750810 • Fax: 09-25 105100
, allee des Garays • 91127 Palaiseau Cedex •01-64 $532020 \cdot$ Fax: 01-60 117726
Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 01189297500 • Fax: 01189297519
Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore $560001 \cdot 91-80-509-1320 / 21 \cdot$ Fax: 91-80-509-1322
New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556
2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838
c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 16970 Solna • 08-509 04679 • Fax: 08-655 2610
1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

M odel 2000 M ultimeter Repair Manual

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revision Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released between Revisions, contain important change information that the user should incorporate immediately into the manual. Addenda are numbered sequentially. When a new Revision is created, all Addenda associated with the previous Revision of the manual are incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this print history page.

[^0]Revision B (Document Number 2000-902-01) .. March 1997

KEITHLEY Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.
This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.
If the product is used in a manner not specified, the protection provided by the product may be impaired.
The types of product users are:
Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.
Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.
Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.
Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.
Keithley products are designed for use with electrical signals that are rated Installation Category I and Installation Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Installation Category I and must not be directly connected to mains voltage or to voltage sources with high transient over-voltages. Installation Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.
Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.
Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.
Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.
When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting ca-
bles or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.
Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.
When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.
Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.
If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If $\stackrel{\perp}{=}$ or I_{7} is present, connect it to safety earth ground using the wire recommended in the user documentation.
The $\$$ symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.
The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.
The WARNING heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.
The CAUTION heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.
Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.
To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.
To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

Table of Contents

1 Routine Maintenance

Introduction. 1-2
Setting line voltage and replacing fuse 1-2
AMPS fuse replacement 1-4
2 Troubleshooting
Introduction. 2-2
Repair considerations 2-3
Power-on test 2-3
Front panel tests 2-4
Principles of operation 2-5
Display board checks 2-11
Power supply checks 2-11
Digital circuitry checks 2-12
Analog signal switching states 2-13
Built-In Test overview 2-18
Built-In Test documentation 2-22
3 Disassembly
Introduction. 3-2
Handling and cleaning 3-3
Static sensitive devices 3-4
Assembly drawings 3-4
Case cover removal 3-5
Changing trigger link lines 3-6
Motherboard removal 3-7
Front panel disassembly 3-8
Main CPU firmware replacement 3-9
Removing power components 3-10
Instrument re-assembly 3-12
4 Replaceable Parts
Introduction. 4-2
Parts lists 4-2
Ordering information 4-2
Factory service 4-3
Component layouts 4-3
A SpecificationsA-1

List of Illustrations

1 Routine Maintenance

Power module 1-3
2 Troubleshooting
Power supply block diagram 2-6
Digital circuitry block diagram 2-7
Analog circuitry block diagram. 2-9
3 Disassembly
Trigger link line connections 3-6

List of Tables

1 Routine Maintenance
Fuse rating 1-3
2 Troubleshooting
Power supply circuits 2-7
Display board checks 2-11
Power supply checks 2-11
Digital circuitry checks 2-12
DCV signal switching 2-13
ACV and FREQ signal switching 2-13
$\Omega 2$ signal switching 2-14
$\Omega 4$ signal switching 2-14
$\Omega 2 / \Omega 4$ reference switching 2-15
DCA signal switching 2-15
ACA signal switching 2-15
DCV signal multiplexing and gain 2-16
ACV and ACA signal multiplexing and gain 2-16
DCA signal multiplexing and gain 2-16
$\Omega 2$ signal multiplexing and gain 2-16
$\Omega 4$ signal multiplexing and gain 2-17
Circuit section location for switching devices 2-17
Built-In Test summary 2-19

Introduction

The information in this section deals with routine type maintenance that can be performed by the operator. This information is arranged as follows:

- Setting line voltage and replacing fuse - Explains how to select the alternate power line voltage setting, and how to replace a blown power line fuse.
- Amps fuse replacement - Explains how to replace a blown current fuse.

Setting line voltage and replacing fuse

A rear panel fuse located next to the AC receptacle (in the power module) protects the power line input of the instrument. If the line voltage setting needs to be changed or the line fuse needs to be replaced, perform the following steps.

WARNING $\quad \begin{aligned} & \text { Disconnect the line cord at the rear panel and remove all test leads connected to the instru- } \\ & \text { ment (front and rear) before replacing the line fuse or changing the line voltage setting. }\end{aligned}$

1. Place the tip of a flat-blade screwdriver into the power module by the fuse holder assembly (see Figure 1-1). Gently push in and to the left. Release pressure on the assembly and its internal spring will push it out of the power module.
2. Remove the fuse and replace it with the type listed in Table 1-1.

CAUTION For continued protection against fire or instrument damage, only replace fuse with the type and rating listed. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.
3. If configuring the instrument for a different line voltage, remove the line voltage selector from the assembly and rotate it to the proper position. When the selector is installed into the fuse holder assembly, the correct line voltage appears inverted in the window.
4. Install the fuse holder assembly into the power module by pushing it in until it locks in place.

Figure 1-2
Power module

Table 1-1
Fuse rating

Line voltage	Fuse rating	K eithley part no.
$100 / 120 \mathrm{~V}$	0.25 A slow-blow $5 \times 20 \mathrm{~mm}$	FU-96-4
$220 / 240 \mathrm{~V}$	0.125 A slow-blow $5 \times 20 \mathrm{~mm}$	FU-91

AMPS fuse replacement

WARNING Make sure the instrument is disconnected from the power line and other equipment before replacing the AMPS fuse.

1. Turn off the power and disconnect the power line and test leads.
2. From the front panel, gently push in the AMPS jack with your thumb and rotate the fuse carrier one-quarter turn counter-clockwise. Release pressure on the jack and its internal spring will push the fuse carrier out of the socket.
3. Remove the fuse and replace it with the same type 3A, 250V, fast blow: Keithley part number FU-99-1.

CAUTION Do not use a fuse with a higher current rating than specified or instrument damage may occur. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.

4. Install the new fuse by reversing the procedure.

Troubleshooting

Introduction

WARNING The information in this section is intended for qualified service personnel. Some of these procedures may expose you to hazardous voltages. Do not perform these hazardous procedures unless you are qualified to do so.

This section of the manual will assist you in troubleshooting the Model 2000. Included are self-tests, test procedures, troubleshooting tables, and circuit descriptions. It is left to the discretion of the repair technician to select the appropriate tests and documentation needed to troubleshoot the instrument. This section is arranged as follows:

- Repair considerations - Covers some considerations that should be noted before making any repairs to the Model 2000.
- Power-on test - Describes the tests that are performed on memory elements each time the instrument is turned on.
- Front panel tests - Provides the procedures to test the functionality of the front panel keys and the display.
- Principles of operation - Provides support documentation for the various troubleshooting tests and procedures. Included is some basic circuit theory for the display board, power supply, digital circuitry and analog circuitry.
- Display board checks - Provides display board checks that can be made if front panel tests fail.
- Power supply checks - Provides power supply checks that can be made if the integrity of the power supply is questionable.
- Digital circuitry checks - Provides some basic checks for the digital circuitry.
- Analog signal switching states - Provides tables to check switching states of various relays, FETs, analog switches and the A/D multiplexer for the basic measurement functions and ranges.
- Built-in test overview - Summarizes the built-in tests, which can be used to test and exercise the various digital and analog circuits.
- Built-in test documentation - Provides a detailed analysis of each built-in test.

Repair considerations

Before making any repairs to the Model 2000, be sure to read the following considerations.

> CAUTION The PC-boards are built using surface mount techniques and require specialized equipment and skills for repair. If you are not equipped and/or qualified, it is strongly recommended that you send the unit back to the factory for repairs or limit repairs to the PC-board replacement level. Without proper equipment and training, you could damage a PC-board beyond repair.

1. Repairs will require various degrees of disassembly. However, it is recommended that the Front Panel Tests and Built-In-Test be performed prior to any disassembly. The disassembly instructions for the Model 2000 are contained in Section 3 of this manual.
2. Do not make repairs to surface mount PC-boards unless equipped and qualified to do so (see previous CAUTION).
3. When working inside the unit and replacing parts, be sure to adhere to the handling precautions and cleaning procedures explained in Section 3.
4. Many CMOS devices are installed in the Model 2000. These static-sensitive devices require special handling as explained in Section 3.
5. Anytime a circuit board is removed or a component is replaced, the Model 2000 must be recalibrated.

Power-on test

During the power-on sequence, the Model 2000 will perform a checksum test on its EPROM (U156 and U157) and test its RAM (U151 and U152). If one of these tests fails the instrument will lock up.

Front panel tests

There are two front panel tests: one to test the functionality of the front panel keys and one to test the display. In the event of a test failure, refer to "Display Board Checks" for details on troubleshooting the display board.

KEY test

The KEY test allows you to check the functionality of each front panel key. Perform the following steps to run the KEY test:

1. Press SHIFT and then TEST to access the self-test options.
2. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display "TEST: KEY".
3. Press ENTER to start the test. When a key is pressed, the label name for that key is displayed to indicate that it is functioning properly. When the key is released, the message "NO KEY PRESS" is displayed.
4. Pressing EXIT tests the EXIT key. However, the second consecutive press of EXIT aborts the test and returns the instrument to normal operation.

DISP test

The display test allows you to verify that each pixel and annunciator in the vacuum fluorescent display is working properly. Perform the following steps to run the display test:

1. Press SHIFT and then TEST to access the self-test options.
2. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display "TEST: DISP".
3. Press ENTER to start the test. There are four parts to the display test. Each time ENTER is pressed, the next part of the test sequence is selected. The four parts of the test sequence are as follows:
A. All annunciators are displayed.
B. The pixels of each digit are sequentially displayed.
C. The 12 digits (and annunciators) are sequentially displayed.
D. The annunciators located at either end of the display are sequentially displayed.
4. When finished, abort the display test by pressing EXIT. The instrument returns to normal operation.

Principles of operation

The following information is provided to support the troubleshooting tests and procedures covered in this section of the manual. Refer to the following block diagrams:

Block Diagrams:
Figure 2-1 - Power supply block diagram
Figure 2-2 - Digital circuitry block diagram
Figure 2-3 - Analog circuitry block diagram

Display board

Microcontroller

U401 is the display board microcontroller that controls the display and interprets key data. The microcontroller uses three internal, peripheral I/O ports for the various control and read functions.

Display data is serially transmitted to the microcontroller from the digital section via the TXB line to the microcontroller RDI terminal. In a similar manner, key data is serially sent back to the digital section through the RXB line via TDO. The 4MHz clock for the microcontroller is generated by crystal Y401.

Display

DS401 is the display module, which can display up to 12 alpha-numeric characters and the various annunciators.

The display uses a common multiplexing scheme with each character refreshed in sequence. U402 and U403 are the drivers for the display characters and annunciators. Note that data for the drivers are serially transmitted from the microcontroller (MOSI and PC1).

Filament voltage for the display is derived from the power supply transformer (F1 and F2). The display drivers require +37 VDC and +5 VDC , which are supplied by U144 (+5 VD) and U101 (+37V).

Key matrix

The front panel keys (S401-S430) are organized into a row-column matrix to minimize the number of microcontroller peripheral lines required to read the keyboard. A key is read by strobing the columns and reading all rows for each strobed column. Key down data is interpreted by the display microcontroller and sent back to the main microprocessor using proprietary encoding schemes.

Power supply

The following information provides some basic circuit theory that can be used as an aid to troubleshoot the power supply. A block diagram of the power supply is shown in Figure 2-1.

Figure 2-1
Power supply block diagram

AC power is applied to the AC power module receptacle (J1009). Power is routed through the line fuse and line voltage selection switch of the power module to the power transformer. The power transformer has a total of four secondary windings for the various supplies.

AC voltage for the display filaments is taken from a power transformer secondary at F1 and F2, and then routed to the display board.

Each DC supply uses a bridge rectifier, a capacitive filter arrangement and a regulator. Table 2-1 summarizes rectifier, filter and regulator circuits for the various supplies.

Table 2-1

Power supply circuits

Supply	Rectifier	Filter	Regulator
+5 VD	CR104	C128, C156	U144
+37 V	CR116, CR117	C104, C108	U101
+15 V	CR102	C148	U125
-15 V	CR102	C131	U119
$+5 \mathrm{~V},+5 \mathrm{VRL}$	CR103	C146	U124

Digital circuitry

Refer to Figure 2-2 for the following discussion on digital circuitry.

Figure 2-2
Digital circuitry
block diagram

Microprocessor

U135 is a 68306 microprocessor that oversees all operating aspects of the instrument. The MPU has a 16-bit data bus and provides an 18 -bit address bus. It also has parallel and serial ports for controlling various circuits. For example, the RXDA, TXDA, RXDB and TXDB lines are used for the RS-232 interface.

The MPU clock frequency of 14.7456 MHz is controlled by crystal Y101. MPU RESET is performed momentarily (through C241) on power-up by the +5 VD power supply.

Memory circuits

ROMs U156 and U157 store the firmware code for instrument operation. U157 stores the D0D7 bits of each data word, and U156 stores the D8-D15 bits.

RAMS U151 and U152 provide temporary operating storage. U152 stores the D0-D7 bits of each data word, and U151 stores the D8-D15 bits.

Semi-permanent storage facilities include NVRAM U136. This IC stores such information as instrument setup and calibration constants. Data transmission from this device is done in a serial fashion.

RS-232 interface

Serial data transmission and reception is performed by the TXDB and RXDB lines of the MPU. U159 provides the necessary voltage level conversion for the RS-232 interface port.

IEEE-488 interface

U158, U160 and U161 make up the IEEE-488 interface. U158, a 9914A GPIA, takes care of routine bus overhead such as handshaking, while U160 and U161 provide the necessary buffering and drive capabilities.

Trigger circuits

Buffering for Trigger Link input and output is performed by U146. Trigger input and output is controlled by the IRQ4 and PB3 lines of the MPU. U164 provides additional logic for the trigger input to minimize MPU control overhead.

At the factory, trigger output is connected to line 1 of the Trigger Link connector (resistor R267 installed). Trigger input is connected to line 2 of the Trigger Link connector (resistor R270 installed).

Analog circuitry

Refer to Figure 2-3 for the following discussion on analog circuitry.

Figure 2-3
Analog circuitry block diagram

INPUT HI

INPUT HI protection is provided by the SSP (solid state protection) circuit. The SSP is primarily made up of Q101 and Q102. An overload condition opens Q101 and Q102. This disconnects the analog input signal from the rest of the analog circuit.

Note that for the 100 VDC and 1000 VDC ranges, Q101 and Q102 of the SSP are open. The DC voltage signal is routed through the DCV Divider (Q114 and Q136 on) to the DCV switching circuit.

AMPS input

The ACA or DCA input signal is applied to the Current Shunt circuit, which is made up of K103, R158 and R205. For the 10mADC range, 10.1Ω (R158 + R205) is shunted across the input. Relay K103 is energized (on) to select the shunts. For all other DCA ranges, and all ACA ranges, 0.1Ω (R158) is shunted across the input (K103 off).

The ACA signal is then sent to the AC Switching \& Gain circuit, while the DCA signal is routed directly to the A/D MUX \& Gain circuit.

Signal switching

Signal switching for DCV and OHMS is done by the DCV \& Ohms Switching circuit. FETs Q113, Q105, Q104 and Q108 connect the DCV or ohms signal to the $\times 1$ buffer (U113). (Tables $2-5$ through $2-8$ show the switching states of these FETs for the various DCV and OHMS ranges.)

Note that the reference current for OHMS is generated by the Ohms I-Source circuit. For 4wire ohms measurements, SENSE LO is connected to the circuit by turning on Q121.

Signal switching and gain for ACV, FREQ and ACA is done by the AC Switching \& Gain circuit, which is primarily made up of K102, U102, U103, U105, U112, U118, U111 and U110. Tables 2-6 and 2-11 show the switching states for these AC signals. Note that U111 is used for frequency adjustment. The states of these analog switches vary from unit to unit.

Multiplexer and A/D converter

All input signals, except FREQ, are routed to the A/D MUX \& Gain circuit. The multiplexer (U163) switches the various signals for measurement. In addition to the input signal, the multiplexer also switches among reference and zero signals at various phases of the measurement cycle.

When the input signal is selected by the MUX, it is amplified by U132 and U166. Tables 212 through 2-16 identify the input signal lines ($\mathrm{S} 3, \mathrm{~S} 4, \mathrm{~S} 6$ or S 7) of the multiplexer for the various functions and ranges. These tables also provide the switch states of U129, which determine the gain for U132 and U166.

The multiplexed signals of the measurement cycle are routed to the A/D Converter (U165) where it converts the analog signals to digital form. The digital signals are then routed through an opto-isolator to the MPU to calculate a reading.

Display board checks

If the front panel DISP test indicates that there is a problem on the display board, use Table 2-2. See "Principles of Operation" for display circuit theory.

Table 2-2
Display board checks

Step	Item/component	R equired condition	Remarks
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Front panel DISP test. P1005, pin 5 P1005, pin 9 U401, pin 1 U401, pin 43 U401, pin 32 U401, pin 33	Verify that all pixels operate. $\begin{aligned} & +5 \mathrm{~V}+/-5 \% \\ & +37 \mathrm{~V}+/-5 \% \end{aligned}$ Goes low briefly on power up, then goes low. 4 MHz square wave. Pulse train every 1 msec . Brief pulse train when front panel key pressed.	Use front panel display test. Digital +5 V supply. Display +37 V supply. Microcontroller RESET. Controller 4 MHz clock. Control from main processor. Key down data sent to main processor.

Power supply checks

Power supply problems can be checked out using Table 2-3. See "Principles of Operation" for circuit theory on the power supply.

Table 2-3
Power supply checks

Step	Item/component	Required condition	Remarks
1	Line fuse	Check continuity.	Remove to check.
2	Line voltage	$120 \mathrm{~V} / 240 \mathrm{~V}$ as required.	
3	Line power	Plugged into live receptacle, power on. Check for correct power-up sequence.	
4	U144, pin2	$+5 \mathrm{~V}+/-5 \%$	+5 VD, referenced to Common D.
5	U101, pin 7	$+37 \mathrm{~V}+/-5 \%$	+37 V, referenced to Common D.
6	U125, pin 3	$+15 \mathrm{~V}+/-5 \%$	+15 V, referenced to Common A.
7	U119, pin 3	$-15 \mathrm{~V}+/-5 \%$	-5 V, referenced to Common A.
8	U124, pin 3	$+5 \mathrm{~V}+/-5 \%$	+5 VRL, referenced to Common A.

Digital circuitry checks

Digital circuit problems can be checked out using Table 2-4. See "Principles of Operation" for digital circuit.

Table 2-4
Digital circuitry checks

Step	Item/component	Required condition	Remarks
1	Power-on test	RAM OK, ROM OK.	Verify that RAM and ROM are functional. All signals referenced to digital common. 2
3	U152 pin 16	U152 pin 32	Digital common.
4	U135 pin 48	Low on power-up, then goes Digital logic supply. hPU RESET line.	
5	U135, lines A1 thru A23	Check for stuck bits.	
6	U135, lines D1 thru D15	Check for stuck bits.	MPU address bus.
7	U135 pin 44	14.7456MHz	MPU data bus.
8	U159 pin 13	Pulse train during RS-232 I/O.	MPU clock.
9	U159 pin 14	Pulse train during RS-232 I/O.	RS-232 TX line.
10	U158 pins 34-42	Puse train during IEEE-488 I/O.	IEEE-488 data bus.
11	U158 pins 26-31	Pulses during IEEE-488 I/O.	IEEE-488 command
12	U158 pin 24	Low with remote enabled.	lines.
IEEE-488 REN line.			
13	U158 pin 25	Low during interface clear.	IEEE-488 IFC line.
14	U135 pin 84	Pulse train.	ADRXB
15	U135 pin 91	Pulse train.	Pulse train.
16	U135 pin 90	Pulse train.	ADTX
17	U135 pin 89	ADTS	

Analog signal switching states

Tables 2-5 through 2-11 provide switching states of the various relays, FETs and analog switches for the basic measurement functions and ranges. These tables can be used to assist in tracing an analog signal from the input to the A / D multiplexer.

Table 2-5
DCV signal switching

R ange	Q101	Q102	Q114	Q136	Q109	K 101*	Q113	Q105	Q104	Q108	Q121
100 mV	ON	ON	OFF	OFF	OFF	SET	OFF	OFF	ON	OFF	ON
1V	ON	ON	OFF	OFF	OFF	SET	OFF	OFF	ON	OFF	ON
10 V	ON	ON	OFF	OFF	OFF	SET	OFF	OFF	ON	OFF	ON
100 V	OFF	OFF	ON	ON	OFF	SET	OFF	OFF	OFF	ON	ON
1000 V	OFF	OFF	ON	ON	OFF	SET	OFF	OFF	OFF	ON	ON
*K101 set states:	Pin 8 switched to Pin 7										

Table 2-6
ACV and FREQ signal switching

Range	Q101	Q102	K 101*	K 102*	U 103 pin 8	$\begin{array}{\|l\|} \hline \text { U } 103 \\ \text { pin } 9 \end{array}$	$\begin{array}{\|l\|} \hline \text { U } 105 \\ \text { pin } 9 \end{array}$	$\begin{array}{\|l\|} \hline \text { U } 105 \\ \text { pin } 8 \end{array}$	$\begin{array}{\|l\|} \hline \text { U } 103 \\ \text { pin } 16 \end{array}$	U 103 pin 1	U 105 pin 1	$\begin{aligned} & \text { U111 } \\ & \text { pin } 16 \end{aligned}$
100 mV	ON	ON	RESET	RESET	ON	ON	OFF	OFF	OFF	ON	ON	OFF
1 V	ON	ON	RESET	RESET	ON	ON	OFF	OFF	ON	OFF	OFF	OFF
10 V	ON	ON	RESET	SET	OFF	OFF	ON	OFF	OFF	ON	ON	OFF
100V	ON	ON	RESET	SET	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF
750 V	ON	ON	RESET	SET	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF

[^1]Table 2-7
$\Omega 2$ signal switching

Range	Q101	Q102	Q114	Q136	Q109	K101*	K 102*	Q113	Q105	Q104	Q108	Q121
100Ω	ON	ON	OFF	OFF	OFF	SET	RESET	OFF	ON	OFF	OFF	ON
$1 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	RESET	OFF	ON	OFF	OFF	ON
$10 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	RESET	OFF	ON	OFF	OFF	ON
$100 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	RESET	OFF	ON	OFF	OFF	ON
$1 \mathrm{M} \Omega$	ON	ON	OFF	OFF	OFF	SET	RESET	OFF	ON	OFF	OFF	ON
$10 \mathrm{M} \Omega$	ON	ON	OFF	OFF	ON	SET	RESET	OFF	ON	OFF	OFF	ON
$100 \mathrm{M} \Omega$	ON	ON	OFF	OFF	ON		SET	RESET	OFF	ON	OFF	OFF
ON												

*K101 set states: Pin 8 switched to Pin 7
Pin 3 switched to Pin 4
K102 reset states: Pin 8 switched to Pin 9
Pin 3 switched to Pin 2

Table 2-8
$\Omega 4$ signal switching

Range	Q101	Q102	Q114	Q136	Q109	K 101*	Q113	Q105	Q104	Q108	Q121
100Ω	ON	ON	OFF	OFF	OFF	SET	ON	OFF	OFF	OFF	ON
$1 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	ON	OFF	OFF	OFF	ON
$10 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	ON	OFF	OFF	OFF	ON
$100 \mathrm{k} \Omega$	ON	ON	OFF	OFF	OFF	SET	ON	OFF	OFF	OFF	ON
$1 \mathrm{M} \Omega$	ON	ON	OFF	OFF	OFF	SET	ON	OFF	OFF	OFF	ON
$10 \mathrm{M} \Omega$	ON	ON	OFF	OFF	ON	SET	OFF	ON	OFF	OFF	ON
$100 \mathrm{M} \Omega$	ON	ON	OFF	OFF	ON	SET	OFF	ON	OFF	OFF	ON

[^2]Table 2-9
$\Omega 2 / \Omega 4$ reference switching

R ange	U 133 l.7V	U 133 I7V	Q123	Q125	Q124	Q126	Q120
100Ω	OFF	ON	ON	ON	OFF	OFF	ON
$1 \mathrm{k} \Omega$	OFF	ON	ON	ON	OFF	OFF	ON
$10 \mathrm{k} \Omega$	OFF	ON	OFF	OFF	ON	ON	ON
$100 \mathrm{k} \Omega$	ON	OFF	OFF	OFF	ON	ON	ON
$1 \mathrm{M} \Omega$	ON	OFF	OFF	OFF	ON	ON	ON
$10 \mathrm{M} \Omega$	OFF	ON	OFF	OFF	ON	ON	OFF
$100 \mathrm{M} \Omega$	OFF	ON	OFF	OFF	ON	ON	OFF

Table 2-10
DCA signal switching

R ange	K 103
10 mA	ON
100 mA	OFF
1 A	OFF
3 A	OFF

Table 2-11
ACA signal switching

R ange	K 103	U 105 pin 16	U 105 pin 1	U 111 pin 16	U 105 pin 8	U 103 pin 16	U 103 pin 1
1 A	OFF	ON	ON	OFF	OFF	OFF	OFF
3 A	OFF	ON	ON	ON	OFF	OFF	OFF

Tables 2-12 through 2-16 can be used to trace the analog signal through the A/D multiplexer (U163) to the final amplifier stage. These tables show the MUX lines (S3, S4, S6, S7) that are selected for measurement during the SIGNAL phase of the multiplexing cycle. Also included are switching states of analog switches (U129) that set up the gain for the final amplifier stage (U166).

Table 2-12
DCV signal multiplexing and gain

R ange	Signal (U 163)	U 129 pin 1	U 129 pin 8	U 129 pin 9	G ain (U 166)
100 mV	S4	OFF	OFF	ON	$\times 100$
1 V	S4	OFF	ON	OFF	$\times 10$
10 V	S4	ON	OFF	OFF	$\times 1$
100 V	S4	OFF	ON	OFF	$\times 10$
1000 V	S4	ON	OFF	OFF	$\times 1$

Table 2-13
ACV and ACA signal multiplexing and gain

R ange	Signal (U 163)	U 129 pin 1	U 129 pin 8	U 129 pin 9	G ain (U 166)
All	S3	ON	OFF	OFF	$\times 1$

Table 2-14
DCA signal multiplexing and gain

R ange	Signal (U 163)	$\begin{array}{\|l\|l\|} \hline \text { U } 129 \\ \text { pin } 1 \end{array}$	$\begin{aligned} & \text { U } 129 \\ & \text { pin } 8 \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \text { U } 129 \\ \text { pin } 9 \end{array}$	G ain (U 166)
10 mA	S6	OFF	OFF	ON	$\times 100$
100 mA	S6	OFF	OFF	ON	$\times 100$
1A	S6	OFF	OFF	ON	$\times 100$
3A	S6	OFF	ON	OFF	$\times 10$

Table 2-15
$\Omega 2$ signal multiplexing and gain

R ange	Signal (U 163)	U 29 pin $\mathbf{1}$	U 129 pin 8	U 129 pin 9	G ain (U 166)
100Ω	S4	OFF	OFF	ON	$\times 100$
$1 \mathrm{k} \Omega$	S4	OFF	ON	OFF	$\times 10$
$10 \mathrm{k} \Omega$	S4	OFF	ON	OFF	$\times 10$
$100 \mathrm{k} \Omega$	S4	OFF	ON	OFF	$\times 10$
$1 \mathrm{M} \Omega$	S4	ON	OFF	OFF	$\times 1$
$10 \mathrm{M} \Omega$	S4	ON	OFF	OFF	$\times 1$
$100 \mathrm{M} \Omega$	S4	ON	OFF	OFF	$\times 1$

Table 2-16
$\Omega 4$ signal multiplexing and gain

R ange	Signal (U 163)	U 129 pin 1	U 129 pin 8	U 129 pin 9	G ain (U 166)
100Ω	S4 then S7	OFF	OFF	ON	$\times 100$
$1 \mathrm{k} \Omega \Omega$	S4 then S7	OFF	ON	OFF	$\times 10$
$10 \mathrm{k} \Omega \Omega$	S4 then S7	OFF	ON	OFF	$\times 10$
$100 \mathrm{k} \Omega$	S4 then S7	OFF	ON	OFF	$\times 10$
$1 \mathrm{M} \Omega$	S4 then S7	ON	OFF	OFF	$\times 1$
$10 \mathrm{M} \Omega$	S4 then S7	ON	OFF	OFF	$\times 1$
$100 \mathrm{M} \Omega$	S4 then S7	ON	OFF	OFF	$\times 1$

Figure 2-3 provides a block diagram of the analog circuitry. Table 2-17 is provided to show where the various switching devices are located in the block diagram.

Table 2-17

Circuit section locations for switching devices

Switching devices	A nalog circuit section (see Figure 2-3)
Q101, Q102	SSP (Solid State Protection)
Q114, Q136, Q109	DCV Divider
K101, Q113, Q105, Q104, Q108	DCV \& Ohms Switching
Q121	Sense LO
K102, U103, U105, U111	AC Switching \& Gain
U133, Q123, Q125, Q124,	
Q126, Q120	Ohms I-Source
K103	Current Shunts
U163, U129	A/D Mux \& Gain

Built-In Test overview

Built-In Test is used to test and exercise various circuits and components. The Built-In Tests are listed in Table 2-18. Many of the tests are actual pass/fail type tests, while others are circuit exercises that are used for subsequent tests. Each Built-In Test can be run manually. After a test is manually run, operation is "frozen" to allow the technician to troubleshoot the circuit.

Using Built-In Test

There are several ways to run the Built-In Test, including the following recommended sequence:

1. Run the AUTO bit test (see "AUTO Testing") and note the first (lowest numbered) test that has failed. Always address the lowest numbered test failure first because that failure could cause subsequent tests to fail.
2. Familiarize yourself with the failed circuit. See "Built-In Test Documentation" for troubleshooting information. Be sure to read the documentation for the complete series. For example, if test 202.4 fails, read the documentation for all 202 series tests.
3. Manually run the test that failed (see "MANUAL Testing"). Keep in mind that many of the pass/fail type tests require that one or more circuit exercise tests be run first. Using the manual step looping mode will "freeze" instrument operation after a test is run.
4. After manually running the test, use the test documentation and your troubleshooting expertise to locate the problem.
5. After repairing the instrument, start again at step 1 to check the integrity of the repair and to see if there are any other failures.

Table 2-18
Built-In Test summary

Test	Circuit tested
Bank 100	A/D
100.1	A/D
100.2	A/D
101.1	TestCal
101.2	TestCal
101.3	TestCal
Bank 200	REF/MUX
200.1	Reference
200.2	Reference
201.1	A/D Mux Lo
201.2	A/D Mux Lo
Bank 300	DC/OHM
300.1	Front End Lo
301.1	Hi Ohms
301.2	Hi Ohms
302.1	2W Sense
302.2	2W Sense
303.1	Lo Ohm Path
303.2	Lo Ohm Path
304.1	Input /100
Bank 400	VAC
400.1	Non Inv Path
400.2	Non Inv Path
400.3	Non In Path
401.1	Invert Path
401.2	Invert Path
401.3	Invert Path
402.1	Non Inv /10
402.2	Non Inv /10
402.3	Non Inv /10
403.1	Non Inv Bex2
403.2	Non Inv Bex2
403.3	Non Inv Bex2
Bank 500	SENSE
500.1	4W Sense
500.2	4W Sense
Bank 600	AMP/OHM
600.1	Ohm/Amp
600.2	Ohm/Amp
601.1	Amp Shunt
601.2	Amp Shunt
601.3	Amp Shunt

AUTO testing

1. Press SHIFT and then TEST to access the self-test options.
2. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display "TEST: BUILT-IN" and press ENTER.
3. Use the $\boldsymbol{\triangle}$ or $\boldsymbol{\nabla}$ key to display "BIT: AUTO" and press ENTER.
4. Use the $\boldsymbol{\square}, \boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display the bank of tests that you wish to run and press ENTER. Test BANK selections include:

FULL Perform all tests.
A/D Perform tests on A/D converter.
REF/MUX Perform tests on reference and multiplexer circuitry.
DC/OHM Perform tests on DC and ohm circuitry.
VAC Perform tests on AC volts circuitry.
SENSE Perform tests on sense circuitry.
AMP/OHM Perform tests on amp and ohm circuitry.
5. Use the $\boldsymbol{\perp}, \boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display one of the following FAULT options:

PAUSE The tests will stop (pause) when a failure (FAULT) occurs. CONT The tests will not stop (continue) when a failure occurs.
6. Press ENTER and go to step A or B:
A. If the PAUSE fault option was selected, the tests will start immediately. The tests stop at a failure (FAULT) and displays the test number of the failure. Press ENTER to continue the tests or press EXIT to abort the tests.
B. If the CONT fault option was selected, use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display one of the following REPEAT options and press ENTER to start the tests:
NO Perform the specified tests and stop.
YES Continuously repeat the specified tests.
When a failure occurs, the "FAULT" message will be displayed. If the YES repeat option was selected, use the EXIT key when ready to stop the tests.
7. After the tests are finished, any failures are displayed. With the "FAILS" message displayed, use the $\boldsymbol{\square}, \mathbf{\Delta}$ or $\boldsymbol{\nabla}$ key to scroll through the test numbers of the failures.
8. When finished, use the EXIT key to back out of the test menu structure.

MANUAL testing

1. Press SHIFT and then TEST to access the self-test options.
2. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display "TEST: BUILT-IN" and press ENTER.
3. Use the $\boldsymbol{\triangle}$ or $\boldsymbol{\nabla}$ key to display "BIT: MANUAL" and press ENTER.
4. Use the $\boldsymbol{4}$ and keys, or the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys to display the desired test series number. For example, if you wish to run test 302.2, display the series 302 test number as shown:

MANUAL: 302
5. With the desired test series number displayed, press ENTER.
6. Use the $\boldsymbol{\Delta}, \boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to display one of the following looping modes and press ENTER:

SINGLE - Performs all the tests in the specified series. The instrument displays the number of the test being run. If a failure occurs, the "FAULT" message appears and stays on for the remainder of the tests in the series. This testing process automatically stops after the last test in the series is completed. This test process can also be stopped by pressing EXIT. When EXIT is pressed, any test in process will be allowed to finish before aborting the testing process.
CONTINUOUS - This looping mode continuously repeats all the tests in the specified series until the testing process is manually stopped. If a failure occurs, the "FAULT" message appears and stays on for the remainder of the tests in the series. This test process can be stopped by pressing EXIT. When EXIT is pressed, any test in process will be allowed to finish before aborting the testing process.
STEP - Used to perform one test at a time. Each press of the ENTER key performs the displayed test. If a failure occurs, the "FAULT" message appears for that test. The instrument automatically aborts the testing process after the last test in the series is run. If you do not wish to run all the tests in the series, simply press EXIT after the desired test is run.
7. After the tests are finished, any failures are displayed. With the "FAILS" message displayed, use the $\boldsymbol{\square}, \boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to scroll through the test numbers of the failures.
8. When finished, use the EXIT key to back out of the test menu structure.

Built-In Test documentation

The following paragraphs provide a detailed description of each Built-In Test. Refer to "Built-In Test overview" for basic information on how to use Built-In Tests. The following documentation is provided for each test:

- Test Identification - Includes test bank, number and name.
- Input Requirements - Indicates the required state of the input terminals for the test. Note that input requirements are displayed by the Model 2000 when Built-In Test is run.
- Expected Value and Limits - Provides the measurement or reading value (and limits) that is expected for the test as explained in the "Description".
- Fault Message - For pass/fail type tests, a message is provided to summarize the cause of the failure.
- Description - Provides a description of circuit being tested. In general, all components in the tested circuit could be the cause of a failure.
- Bit Patterns - Provides the logic states of key shift registers. After a test is manually run, you can check the registers for the correct logic levels.

NOTE The letter " v " in a bit pattern indicates a "don't care" condition.

TEST BANK: A/D

Test 100.1 - A/D

Bank	A/D
Inputs	Open
Expected Value	153661550 counts
Limits	1200000 counts
Fault Message	NO A/D COMM

D escription

This A/D test uses the default conditions of the ADC word and the ACDC word. This sets up the front end of the instrument to a stable configuration. The MUX word is applied to register U130 which sets lines A0, A1 and A2 of U 163 high. This bit pattern selects the S 8 input, which connects signal LO to the D output.

Signal LO is then connected to op amp U166 which is configured for $\times 1$ gain with feedback through mux switch U129 pin 2 to 3 . Signal LO is then connected to the A/D at A/D_IN.

In the first tests the value is in the form of counts. Signal LO is converted to counts in the A/D and then compared to a zero by-design value. This test checks the functionality of the A / D converter. If the 100 series tests fail, all other tests will be invalid. Measure 0V at A/D-IN. Failures could be the A/ D MUX U163, the A/D buffer U132 and associated circuitry, or almost any component in the A/D section. Primary checks should be the references and power supplies, then the control circuit U165.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	- U121-	ACDC_STB
110v1111	00101111	$\begin{gathered} \text { 1v10000v } \\ \text {-U130- } \end{gathered}$	01110010	MUX_STB
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 100.2 - A/D

Bank A/D

Inputs
Expected Value
Limits
Fault Message

Open
<none specified>
100 counts
SIGNAL NOISY

Description This test has the identical setup as the 100.1 test. Signal LO is connected to the A / D circuit for ten readings and a min/max comparison is done to ensure that all readings are within 100 counts of each other. The test is to check for noise. The failures are the same as in test 100.1.

Primary checks should be the references and power supplies. Secondary tests are the op amps of the integrator (U138 and U137), gain op amp U142, and the zero-cross comparator U145.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		- U130-		MUX_STB
		11111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 101.1 - TESTCAL

Bank	A/D
Expected Value	<none specified>
Limits	<none specified>
Inputs	Open

Description

TESTCAL is a way to calibrate the unit with internal references so that the remaining tests can be displayed in the form of voltages. Given that there are errors in the internal references and in the A/D circuitry, the voltages on the display of the unit may vary from the value that is measured at A/D-IN with a calibrated test meter. The values on the display of the unit under test are values that are relative to the internal references.

This test has the same set up as the 100.1 and 100.2 tests. The A/D makes a conversion of the signal zero and stores the value in the form of A / D counts to be used in the next phase of the test. There is no fault message for this test. Measure 0 V at $\mathrm{A} / \mathrm{D}-\mathrm{IN}$.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		-U130-		MUX_STB
		11111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5 =14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 101.2 - TESTCAL

Bank A/D
Inputs Open
Expected Value
(101.2) $-(101.1)=76275970$ counts

Limits
1800000
Fault Message
NO 7V AT A/D

Description

This A/D test uses the default conditions of the ADC word and the ACDC word. This sets up the front end of the instrument to a stable configuration. The MUX word is applied to register U130 which sets the lines of U163 as follows; A0 and A1 low, A2 high. This bit pattern selects the S5 input, which connects REFHI to the D output.

REFHI is then connected to op amp U166 which is configured for $\times 1$ gain with feedback through mux switch U129 pin 2 to 3 . The buffered value of REFHI is then connected to the A/D at A/D-IN.

A conversion is taken in the form of A / D counts and compared to the value taken in test 101.1. The value in counts of test 101.2 minus the value in counts of test 101.1 yields a value that is compared to a value by-design for REFHI. If this value is within the limits, the REFHI reference, which is 7 volts, is considered acceptable. Measure 7V at A/D-IN. Failures could be the MUX (U163), or the reference circuit (U141) and the associated circuitry.

Bit patterns

Test 101.3 - TESTCAL

Bank	A/D
Inputs	Open
Expected Value	1.03 volts
Limits	0.06 volts
Fault Message	NO 1V AT A/D

This test uses the default conditions of the ADC word and the ACDC word. This sets up the front end of the instrument to a stable configuration. The MUX word sets shift register U130 to disable U163 by setting line /EN low. The /EN line is also connected to pin 16 of U129 which closes the mux switch for pins 14 and 15 . This connects the voltage between R189 and R185 (around 1.03 volts) to op amp U166, which is configured for $\times 1$ gain with feedback through U129 (pin 2 to 3). The buffered value of the signal is then connected to the A/D at A/D-IN.

A conversion is taken and compared to the calibration values in tests 101.1 and 101.2, and displayed as a voltage. Measure 1.03 V at A/D-IN. Primary tests are on the resistor divider (R189, R185, and R188), the MUX U163, and the signal path from the resistor divider.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		- U130-		MUX_STB
		11111100		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

TEST BANK: REF/MUX

Test 200.1 - REFERENCE

Bank	REF/MUX
Inputs	Open
Expected Value	1 volt
Limits	0.1 volts
Fault Message	1VREF/AD X10

Description

The 7V REFHI signal is routed through R189 and R185, which forms a $0.014 / 1$ voltage divider with R 188 . The 0.1 V result $(0.014 \times 7 \mathrm{~V}=0.1 \mathrm{~V})$ is then applied to S1 of U163. The A0, A1 and A2 bit pattern on U163 is set to connect the S 1 signal $(0.1 \mathrm{~V}$) to the D output. The signal is then routed through R159, Q117 and R166 to the non-inverting input of op amp U166. A/D MUX (U166) is configured for $\times 10$ gain ($/ \times 10$ control line is low turning on U129 analog switch; pins 6 to 7). Feedback resistors R309 and R310 configure the $\times 10$ gain. Measure 1 V at AD_IN.

Bit patterns

Test 200.2 - REFERENCE

Bank	REF/MUX
Inputs	Open
Expected Value	10 volts
Limits	1 volt
Fault Message	AD X100

Description Same as test 200.1 except the A/D MUX is configured for $\times 100$ gain (/ $\times 100$ control line is low). The gain path is through U129 pin 10 to 11. Resistor network R271 is used to configure the x 100 gain. Measure 10V at AD_IN.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
- U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		-U130-		MUX_STB
		10001011		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 201.1 - A/D MUX LO

Bank	REF/MUX
Inputs	Open
Expected Value	0 volts
Limits	0.0001 volts
Fault Message	SENSE LO 0

Description Signal LO is routed through R181 and Q122 (/LOMUXA control line high) into unity gain amp U126. Signal LO is then routed to S7 of U163. The A0, A1 and A2 bit pattern on U163 connects S7 to the D output, which then routes signal LO through Q117 to U166.

The A/D MUX (U166) is configured for $\times 1$ gain (/ $\times 1$ control line low) by closing U129; pin 2 to 3 . Measure 0 V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		-U130-		MUX_STB
		11011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 201.2 - A/D MUX LO

Bank	REF/MUX
Inputs	Open
Expected Value	0 volts
Limits	0.0001 volts
Fault Message	MUX LO

This test is similar to test 201.1, except signal LO is routed through R274 to S 8 of U163. Signal LO is then routed through Q117 to U166, which is configured for $\times 1$ gain. Measure 0 V at AD_IN.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	- U109-	- U134-	- U121-	ACDC_STB
110v1111	00101111	1v10000v	01110010	
		-U130-		MUX_STB
		11111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

TEST BANK: DC/OHM

Test 300.1 - FRO NT END LO

Bank
Inputs
Expected Value
Limits
Fault Message

DC/OHM
Open
0 volts
0.01 volts

FRONT END LO

Description

This test is for the DC volts front end LO path. Control line DIVLO is high making the U120 comparator output (pin 2) open collector. Q114 is on due to the gate being pulled low by R164. Signal LO is connected to SIG/100 through Q114 and divider R117.

The DIVTAP control line at U115 (pin 11) is pulled high to turn on Q108. This routes SIG/100 LO through Q108 to the unity gain buffer U113. The signal at the output of U113 is now called BUFCOM and goes through R314 to $S 4$ of U163. It then goes to the A/D MUX which is configured for $\times 1$ gain. Measure 0V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01110001	
		-U130-		MUX_STB
		10111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 301.1 - HI OHMS

Bank	DC/OHM
Inputs	Open
Expected Value	7 volts
Limits	0.7 volts
Fault Message	7 V REFBOOT

+7 V is generated by buffering REFHI with op amp U139. This +7 V , which is used by the ohms circuit as a voltage reference, is switched by U133 ($/ 7 \mathrm{~V}$ control line low) to op amp U123 which is a unity gain buffer.

The +7 V reference, now labeled REFBOOT, is routed through R272, Q109 (/HIOHM control line low), the $9.9 \mathrm{M} \Omega$ half of R117, Q101, Q102, K101 (RESETK2 control line high), R304, Q104 (LOV control line high) to U113. The unity gain output of U113 (BUFCOM) then goes to the A/D MUX as in test 300.1 with a gain of $\times 1$. Measure +7 V at AD_IN.

NOTE K101 and K102 are latching relays. Any reference to their control line settings implies that this setting, normally high $(+5 \mathrm{~V})$, may be present for less than 100 milliseconds. Remember this if attempting to troubleshoot these parts, especially when running the BIT test in the MANUAL STEP mode.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	- U134-	-U121-	ACDC_STB
110v1111	00101111	1v10001v	10000100	
		-U130-		MUX_STB
		10111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5 $=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q} 1=4$				

Test 301.2 - HI OHMS

Bank	DC/OHM
Inputs	Open
Expected Value	12.4 volts
Limits	0.5 volts
Fault Message	13.3 REFBOOT

Description This test is the same as 301.1 except that the +13.3 V ohms reference is tested. The +13.3 V reference is generated by the same circuit as the +7 V reference. 14 V is routed through Q130 and then applied to a $1 \mathrm{~K} / 10 \mathrm{~K}$ divider which is part of R271. The +13.3 V divider output is routed through analog switch U133 (/.7V control line low) to op amp U123. The remainder of the path is the same as test 300.1.

The expected voltage at AD_IN would be +13.3 V except that at the source lead of Q104 (labeled SOURCE) there is a clamping circuit. Back-to-back 11V zener diodes VR105 and VR106, and photo-coupler U107 clamp the voltage at the SOURCE node to about +12.4 V . Measure +12.4 V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	$\begin{aligned} & \text { Ov01001v } \\ & \text {-U130- } \end{aligned}$	10000100	MUX_STB
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 302.1 - 2W SENSE

Bank	DC/OHM
Inputs	Open
Expected Value	7 volts
Limits	0.7 volts
Fault Message	2 W SENSE 7V

Description The +7 V reference is again switched to REFBOOT, and routed through R272, Q109, the $9.9 \mathrm{M} \Omega$ half of divider R117, the parallel combination of R115, R324 and L109, and then through R113, R107, R103, R108, and K101. At this point, the reference is labeled 2WSEN_I.

Reference 2WSEN_I is then routed through K102 (control line SETK1 high) to the 2WSEN_O node. This node then goes through Q105 (2W control line high), to U113 (BUFCOM) and to the A/D MUX with $\times 1$ gain. Measure +7 V at AD_IN.

Bit patterns

Bit pattern				R egister
$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U106- } \\ & 110 \mathrm{v} 1111 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q} \quad \mathrm{Q} \\ & 87654321 \\ & \text {-U109- } \\ & 00011111 \end{aligned}$	$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & \text { 87654321 } \\ & \text {-U134- } \\ & \text { 0v10000v } \\ & \text {-U130- } \\ & 10111101 \end{aligned}$	Q Q 87654321 -U121- 10000010	$\begin{aligned} & \text { ACDC_STB } \\ & \text { MUX_STB } \end{aligned}$
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 302.2 - 2W SENSE

Bank	DC/OHM
Inputs	Open
Expected Value	12.4 volts
Limits	0.5 volts
Fault Message	2 W SENSE 13V

Description Same as test 302.1 except the +13.3 V reference is used. This voltage does not go through the ohms zener clamp path but is clipped by the A / D circuit itself at about 12.4 V due to the fact that 13.3 V approaches the power supply limits of the op amps. Measure +12.4 V at AD_IN.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00011111	0v01000v	10000010	
		-U130-		MUX_STB
		10111101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 303.1 - LO OHM PATH

Bank	DC/OHM
Inputs	Open
Expected Value	7 volts
Limits	0.7 volts
Fault Message	7 V SOURCE

This test uses the ohms circuit. The +7 V reference is switched to REFBOOT by closing U133 (/7V line low). Q123 and Q125 are turned on by setting the OHMA control line high. +14 V is applied directly to R194. Since Q123 is on, +7 V appears on the other side of R194. As a result, the voltage drop across R194 (7.06k Ω) is 7 V . A current of 1 mA therefore flows through R194, Q125, Q119, CR114, and Q120 (/LOWOHM control line low).

The current (labeled OHM) then flows through R304, U107, VR106, and VR105 to LO. The +7 V reference is routed through Q104, to BUFCOM, and on to the A/D MUX with a gain of $\times 1$. Measure +7 V at AD_IN.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	$\begin{aligned} & \text { 0v10011v } \\ & -\mathrm{U} 130- \end{aligned}$	01100100	MUX_STB
		1011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5 $=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q} 1=4$				

Test 303.2 - LO OHM PATH

Bank	DC/OHM
Inputs	Open
Expected Value	12.4 volts
Limits	0.5 volts
Fault Message	$13.3 V$ SOURCE

Description This test is similar to test 303.1. The +13.3 V reference is switched to REFBOOT again by closing U133 pins 6 to 7. Q124 and Q126 are turned on by setting the OHMA control line low. +14 V is applied to R 195 , and since Q124 is on, +13.3 V appears on the other end of R195. The voltage across R195 $(70.6 \mathrm{~K} \Omega)$ is $0.7 \mathrm{~V} .10 \mu \mathrm{~A}$ therefore flows through R195, Q126, Q119, CR114, and Q120 (/LOWOHM control line low).

The current (labeled OHM) then flows through R304, U107, VR106, and VR105 to LO. This is again the clamping circuit described in test 301.2. The +12.4 V reference is routed through Q104, to BUFCOM, and on to the A/D MUX with a gain of $\times 1$. Measure +12.4 V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	$\begin{aligned} & \text { Ov01001v } \\ & \text {-U130- } \end{aligned}$	01100100	MUX_STB
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 304.1 - INPUT/100

Bank	DC/OHM
Inputs	Open
Expected Value	7 volts
Limits	0.7 volts
Fault Message	INP SIG/100

The ohms circuit current is set up the same as test 303.1 . A 1 mA current flows into the OHM node but instead of flowing into the clamping circuit, it flows through K101 (RESETK2 control line high) through Q102, Q101, R117, and Q114 to LO.

Resistor R117 is a 100 to 1 divider. Therefore, $0.07 \mathrm{~V}(7 \mathrm{~V} / 100)$ is seen at the SIG/100 node. Q108 is turned on to switch the 0.07 V through U113 (BUFCOM) to the A/D MUX which is configured for $\times 100$ gain. Measure +7 V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	1v10011v	10110001	
		-U130-		MUX_STB
		10111011		
IC pins: $\mathrm{Q} 8=11, \mathrm{Q} 7=12, \mathrm{Q} 6=13, \mathrm{Q}=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q}=4$				

TEST BANK: VAC

Test 400.1 - NON INV PATH

Bank	VAC
Inputs	Open
Expected Value	<none specified>
Limits	<none specified>
Fault Message	<none>

Description

This test places the ACV front end in the non-inverting configuration. Logic levels for this configuration are as follows:

K102: /SETK1 low, /RESETK1 high
U103: Pins 8 and 9 low
U105: Pin 9 high
The signal path is from ACIN through K102 to the plus input of U102. Resistors R117 ($9.9 \mathrm{M} \Omega$) and R146 ($1.1 \mathrm{M} \Omega$) to form a $\div 10$ at the input. The feedback path for U102 is from the minus input through U103 (pins 6 and 7) to node ACFE. Node ACFE is connected to U112 through U103 (pin 1 low). Op amp U112 is configured for $\times 10$ gain. The output of U112 is routed through U105 (pin 1 low). The signal is then coupled across C115 to U118. Analog switch U111 (pin 16 low) is closed to set up U118 for unity gain.

The output of U118 goes to U110 (TRMS converter) through the parallel combination of R129, C113 and C114. The output of the TRMS converter (OUT) is fed back through its own internal buffer. The buffer output signal (BUFF OUT) is then labeled AC_MED. The AC_MED signal is selected at U163 and fed to the A/D buffer (U166) through Q117. The A/D buffer is set up for $\times 1$ gain through U129 ($/ \times 1$ low). This test is a setup phase for the next test.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	- U134-	- U121-	ACDC_STB
110v1111	10011111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 400.2 - NON INV PATH

Bank	VAC
Inputs	Open
Expected Value	5.6 volts
Limits	0.6 volts
Fault Message	NON INV PATH

The previous test sets up the circuit for this test. There is a routine in software that generates a waveform for the ACV tests. This is done by selecting the 13.3 V reference by closing analog switch U133 (.7 V control line low). The reference is buffered by U123 is labeled REFBOOT.

The REFBOOT signal is switched into the front end through Q109 via U120 by toggling the /HIOHM line. This switching routine is done in firmware. Q114 and Q136 are turned ON (conducting to ground) by U120 (DIVLO control line low). The $100 \mathrm{k} \Omega$ leg of R117 acts as a pull-up and pull-down to clean up the switched signal REFBOOT.

The signal path continues through Q101, Q102 and K101 to ACIN. The switched ACIN signal (coupled across C105) is applied to the circuit described in test 400.1 and the measurement is made.

The input signal switching stops while the A/D takes the reading. Signal switching continues after the reading is done. There are delays before the reading is taken to ensure that the ACV section and filters have enough time to reach a charged full scale reading. In this phase, the switched signal can be traced through the circuit described in test 400.1 . Measure 5.6 volts DC at A/D_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	- U134-	-U121-	ACDC_STB
110v1111	10011111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 400.3 - NON INV PATH

Bank
Inputs
Expected V
Limits
Fault Mess
escription

VAC
Open
<none specified>
<none specified>
<none>

This phase resets the circuit to a known state and turns the waveform signal off. Subsequent tests require that the A / D be in the normal operating mode.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
101v0001	10011111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 401.1 - INVERT PATH

Bank VAC
Inputs Open
Expected Value
<none specified>
Limits
Fault Message
<none specified>
<none>

This test places the ACV front end in the inverting configuration. Logic levels for this configuration are as follows:

K102: /SETK1 high, /RESETK1 low
U103: Pins 8 and 9 high
U105: Pin 9 low

The signal path is from ACIN through C105, R104 and R105, which make up a $1.1 \mathrm{M} \Omega$ input resistance to the minus input of op amp U102. The plus input of U102 is connected to AC common through R146. Feedback for U102 is provided by R106 ($11 \mathrm{k} \Omega$). The output gain for U102 (seen at ACFE) is $\times 0.001$ ($\mathrm{R} 106 /(\mathrm{R} 117+\mathrm{R} 104+\mathrm{R} 105)$).

The output of U102 (ACFE) is routed through U103 (pin 1 low) to U112 which is configured for $\times 10$ gain. The signal then goes through U105 (pin 1 low) and is coupled across C115 to U118 which is configured for $\times 2$ gain.

The output of U118 goes to the TRMS converter (U110) through the parallel combination of R129, C113 and C114. The output of the TRMS converter (OUT) is fed back through its own internal buffer. The buffer output signal (BUFF OUT) is then labeled AC_MED. The AC_MED signal is selected at U163 and fed to the A/D buffer (U166) through Q117. The A/D buffer is set up for $\times 1$ gain through U129 ($/ \times 1$ low). This test is a setup phase for the next test.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	- U134-	- U121-	ACDC_STB
101v1101	01101111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 401.2 - INVERT PATH

Bank Inputs Expected V Limits Fault Messa escription

VAC
Open
0.108 volts
0.02 volts

INVERT PATH
The previous test sets up the circuit for this test. There is a routine in software that generates a waveform for the ACV tests. This is done by selecting the 13.3 V reference by closing analog switch U133 ($/ .7 \mathrm{~V}$ control line low). The reference is buffered by U123 is labeled REFBOOT.

The REFBOOT signal is switched into the front end through Q109 via U120 by toggling the /HIOHM line. This switching routine is done in firmware. Q114 and Q136 are turned ON (conducting to ground) by U120 (DIVLO control line low). The $100 \mathrm{k} \Omega$ leg of R117 acts as a pull-up and pull-down to clean up the switched signal REFBOOT.

The signal path continues through Q101, Q102 and K101 to ACIN. The switched ACIN signal (coupled across C105) is applied to the circuit described in test 401.1 and the measurement is made.

The input signal switching stops while the A/D takes the reading. Signal switching continues after the reading is done. There are delays before the reading is taken to ensure that the ACV section and filters have enough time to reach a charged full scale reading. In this phase,the switched signal can be traced through the circuit described in test 401.1. Measure 108 mV DC at A/ D_IN.

Bit patterns

Bit pattern				Register
$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U106- } \\ & 101 \mathrm{v} 1101 \end{aligned}$	$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U109- } \\ & 01101111 \end{aligned}$	Q Q 87654321 -U134- 1v01000v -U130- 10011101	$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U121- } \\ & 01110000 \end{aligned}$	$\begin{aligned} & \text { ACDC_STB } \\ & \text { MUX_STB } \end{aligned}$
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 401.3 - INVERT PATH

Bank	VAC
Inputs	Open
Expected Value	<none specified>
Limits	<none specified>
Fault Message	<none>

D escription
This phase resets the circuit to a known state and turns the waveform signal off. Subsequent tests require that the A / D be in the normal operating mode.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
101v1101	01101111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 402.1 - NON INV / 10

Bank VAC

Inputs
Expected Value
Limits
Fault Message
Description

This test places the ACV front end in the non-inverting configuration. Logic levels for this configuration are as follows:

K102: /SETK1 low, /RESETK1 high
U103: Pins 8 and 9 low
U105: Pin 9 high
The signal path is from ACIN through K102 to the plus input of U102. Resistors R117 (9.9MÍ) and R146 (1.1M $)$ to form a $\div 10$ at the input. The feedback path for U102 is from the minus input through U103 (pins 6 and 7) to node ACFE.

The signal at ACFE is divided by 10 through R110 to make ACFE/10. The ACFE/10 signal bypasses U112 through U105 (pin 8 set LO). The signal is then coupled across C 115 to U118 which is configured for $\times 2$ gain.

The output of U118 goes to U110 (TRMS converter) through the parallel combination of R129, C113 and C114. The output of the TRMS converter (OUT) is fed back through its own internal buffer. The buffer output signal (BUFF OUT) is then labeled AC_MED. The AC_MED signal is selected at U163 and fed to the A/D buffer (U166) through Q117. The A/D buffer is set up for $\times 1$ gain through U129 ($/ \times 1$ low). This test is a setup phase for the next test.

Bit patterns

Bit pattern				R egister
$\begin{aligned} & \hline \mathrm{Q} \quad \mathrm{Q} \\ & 87654321 \\ & \text {-U106- } \\ & \text { 110v0011 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q} \quad \mathrm{Q} \\ & 87654321 \\ & \text {-U109- } \\ & 11011111 \end{aligned}$	Q Q 87654321 -U134- 1v01000v -U130- 10011101	Q Q 87654321 -U121- 01110000	$\begin{aligned} & \text { ACDC_STB } \\ & \text { MUX_STB } \end{aligned}$
IC pins: $\mathrm{Q} 8=11, \mathrm{Q} 7=12, \mathrm{Q} 6=13, \mathrm{Q} 5=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q} 1=4$				

Test 402.2 - NON INV / 10

Bank	VAC
Inputs	Open
Expected Value	0.108 volts
Limits	0.02 volts
Fault Message	NON INV /10

The previous test sets up the circuit for this test. There is a routine in software that generates a waveform for the ACV tests. This is done by selecting the 13.3 V reference by closing analog switch U133 (.7 V control line low). The reference is buffered by U123 is labeled REFBOOT.

The REFBOOT signal is switched into the front end through Q109 via U120 by toggling the /HIOHM line. This switching routine is done in firmware. Q114 and Q136 are turned ON (conducting to ground) by U120 (DIVLO control line low). The $100 \mathrm{k} \Omega$ leg of R117 acts as a pull-up and pull-down to clean up the switched signal REFBOOT.

The signal path continues through Q101, Q102 and K101 to ACIN. The switched ACIN signal (coupled across C105) is applied to the circuit described in test 402.1 and the measurement is made.

The input signal switching stops while the A/D takes the reading. Signal switching continues after the reading is done. There are delays before the reading is taken to ensure that the ACV section and filters have enough time to reach a charged full scale reading. In this phase, the switched signal can be traced through the circuit described in test 402.1. Measure 108mV DC at A/D_IN.

Bit patterns

Test 402.3 - NON INV / 10

Bank
Inputs
Expected V
Limits
Fault Mess
escription

VAC
Open
<none specified>
<none specified>
<none>

This phase resets the circuit to a known state and turns the waveform signal off. Subsequent tests require that the A / D be in the normal operating mode.

Bit patterns

Bit pattern				Register
Q Q	Q Q		Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v0011	11011111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 403.1 - NON INV BEX2

Bank	VAC
Inputs	Open
Expected Value	<none specified>
Limits	<none specified>
Fault Message	<none>

This test places the ACV front end in the non-inverting configuration. Logic levels for this configuration are as follows:

K102: /SETK1 low, /RESETK1 high
U103: Pins 8 and 9 low
U105: Pin 9 high
The signal path is from ACIN through K102 to the plus input of U102. Resistors R117 ($9.9 \mathrm{M} \Omega$) and R146 ($1.1 \mathrm{M} \Omega$) to form $\mathrm{a} \div 10$ at the input. The feedback path for U102 is from the minus input through U103 (pins 6 and 7) to node ACFE. The ACFE signal bypasses U112 through U103 (pin 16 low). The signal is then coupled across C115 to U118 which is configured for x 2 gain.

The output of U118 goes to U110 (TRMS converter) through the parallel combination of R129, C113 and C114. The output of the TRMS converter (OUT) is fed back through its own internal buffer. The buffer output signal (BUFF OUT) is then labeled AC_MED. The AC_MED signal is selected at U163 and fed to the A/D buffer (U166) through Q117. The A/D buffer is set up for $\times 1$ gain through U129 ($/ \times 1$ low). This test is a setup phase for the next test.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
011v0011	11011111	1v01000v	01110000	
		$\frac{\text { U130- }}{10011101}$		MUX_STB
IC pins: $\mathrm{Q} 8=11, \mathrm{Q} 7=12, \mathrm{Q} 6=13, \mathrm{Q}=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q}=4$				

Test 403.2 - NON INV BEX2

Bank
Inputs
Expected Va
Limits?
Fault Messa
escription

The previous test sets up the circuit for this test. There is a routine in software that generates a waveform for the ACV tests. This is done by selecting the 13.3 V reference by closing analog switch U133 ($/ .7 \mathrm{~V}$ control line low). The reference is buffered by U123 is labeled REFBOOT.

The REFBOOT signal is switched into the front end through Q109 via U120 by toggling the /HIOHM line. This switching routine is done in firmware. Q114 and Q136 are turned ON (conducting to ground) by U120 (DIVLO control line low). The $100 \mathrm{k} \Omega$ leg of R117 acts as a pull-up and pull-down to clean up the switched signal REFBOOT.

The signal path continues through Q101, Q102 and K101 to ACIN. The switched ACIN signal (coupled across C105) is applied to the circuit described in test 403.1 and the measurement is made.

The input signal switching stops while the A/D takes the reading. Signal switching continues after the reading is done. There are delays before the reading is taken to ensure that the ACV section and filters have enough time to reach a charged full scale reading. In this phase, the switched signal can be traced through the circuit described in test 403.1. Measure 1.08V DC at A/D_IN.

Bit patterns

Bit pattern				Register
$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U106- } \\ & 011 \mathrm{v} 0011 \end{aligned}$	$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U109- } \\ & 11011111 \end{aligned}$	Q Q 87654321 -U134- 1v01000v -U130- 10011101	$\begin{aligned} & \hline \text { Q } \quad \text { Q } \\ & 87654321 \\ & \text {-U121- } \\ & 01110000 \end{aligned}$	$\begin{aligned} & \text { ACDC_STB } \\ & \text { MUX_STB } \end{aligned}$
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 403.3 - NON INV BEX2

Bank	VAC
Inputs	Open
Expected Value	<none specified>
Limits	<none specified>
Fault Message	<none>

Description
This phase resets the circuit to a known state and turns the waveform signal off. Subsequent tests require that the A / D be in the normal operating mode.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
011v0011	11011111	1v01000v	01110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

TEST BANK: SENSE

Test 500.1 - 4W SENSE

Bank	SENSE
Inputs	4-wire short
Expected Value	0 volts
Limits	0.0001 volts
Fault Message	SENSE LO

Description

This test requires a 4 -wire short at the input. The SLO node is the Sense LO jack on the front or rear panel. The 4 -wire short connects SLO to LO. The 0 V signal at SLO is routed through R132, R139, R148, R163, and Q121 to U126, which is configured as a unity gain buffer. The 0 V output of U126 is routed to S 7 of U 163 where it is switched to the A/D MUX ($\times 1$ gain). Measure 0 V at AD _IN.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	$\begin{aligned} & \text { 1v10000v } \\ & -\mathrm{U} 130- \end{aligned}$	01110010	MUX_STB
IC pins: $\mathrm{Q} 8=11, \mathrm{Q} 7=12, \mathrm{Q} 6=13, \mathrm{Q}=14, \mathrm{Q} 4=7, \mathrm{Q} 3=6, \mathrm{Q} 2=5, \mathrm{Q} 1=4$				

Test 500.2 - 4W SENSE

Bank	SENSE
Inputs	4-wire short
Expected Value	0 volts
Limits	0.0001 volts
Fault Message	SENSE HI

This test requires a 4-wire short at the input. The SHI node is the Sense HI jack on the front or rear panel. The 4 -wire short connects SHI to LO. The 0 V signal at SHI is routed through R120, R124, R121, R125 and Q113 (4W control line high) to U113 BUFCOM. As in previous tests, this signal goes to the A/D MUX which is configured for $\times 1$ gain. Measure 0 V at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
- U106-	-U109-	- U134-	-U121-	ACDC_STB
110v1111	00101111	1v10000v	01101000	
		-U130-		MUX_STB
		10111101		

TEST BANK: AMP/O HM

Test 600.1 - OHM/AMP

Bank
Inputs
Expected Value
Limits
Fault Message

AMP/OHM
INPUT HI to AMPS Short
0.0095 volts
0.001 volts

1 mA SOURCE

Description

This test requires a jumper wire from the INPUT HI jack to the AMPS jack on the front panel. The +7 V reference is switched to the ohms circuit through U133. Q123 and Q125 are turned on to generate a 1 mA current that is routed to the INPUT HI jack. The signal path for this 1 mA current is from the +14 V node through R194, Q125, Q119, Q120, K101 (pins 3 to 4) Q102, Q101, through the parallel combination of R115, L109, and R324, then to the INPUT HI jack.

The jumper wire then routes the 1 mA into the AMPS jack through K103 (SETK3 control line high so that pins 3 to 4 and 7 to 8 are closed). This puts R205 in series with R158 for a total of 10.1Ω. The 1 mA current through 10.1Ω generates around 10 mV which is sensed through S101 and R142 to the AMPSHUNT node. The AMPSHUNT signal is routed to S6 of U163 where it is switched to the A/D MUX. The A/D MUX is configured for $\times 1$ gain. Measure 10 mV at AD _IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	- U134-	-U121-	ACDC_STB
110v1111	00101111	1v10111v	10110010	
		-U130-		MUX_STB
		11101101		

Test 600.2 - OHM/AMP

Bank	AMP/OHM
Inputs	INPUT HI to AMPS short
Expected Value	0.025 volts
Limits	0.015 volts
Fault Message	.1 OHM SHUNT

This test requires a jumper wire from the INPUT HI jack to the AMPS jack on the front panel. The +7 V reference is switched to the ohms circuit through U133. Q123 and Q125 are turned on to generate a 1 mA current that is routed to the INPUT HI jack. The signal path for this 1mA current is from the +14 V node through R194, Q125, Q119, Q120, K101 (pins 3 to 4) Q102, Q101, through the parallel combination of R115, L109, and R324, then to the INPUT HI jack.

The jumper wire then routes the 1 mA into the AMP jack and through K103 (SETK3 control line low so that pins 2 to 3 and 8 to 9 are closed). This bypasses R205 and routes the 1 mA through the 0.1Ω ohm resistor (R158). A 1 mA current through 0.1Ω generates around $100 \mu \mathrm{~V}$ which is sensed through S101 and R142 to the AMPSHUNT node.

The AMPSHUNT signal is routed to S 6 of U 163 where it is switched to the A/D MUX. The A/D MUX is configured for $\times 100$ gain. Since this is a very small voltage, trace resistance and circuit offsets greatly affect the expected voltage of 10 mV . This test is useful to detect the presence of the proper component operation and not so much their precision. Measure approximately 25 mV at AD_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v1111	00101111	$\begin{aligned} & \text { 1v10011vv } \\ & -\mathrm{U} 130- \end{aligned}$	10110010	MUX_STB
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 601.1 - AMP SHUNT

Bank AMP/OHM
Inputs
Expected Value
Limits
Fault Message
<none specified>
<none specified>
<none>

INPUT HI to AMPS short

This test requires an external jumper wire be installed from the INPUT HI jack to the AMPS jack on the front panel. There is a routine in software that generates a test signal current for the ACV AMP test. This signal generation is described in test 601.2.

The test signal is routed through the front end circuit to the front panel INPUT HI jack. The jumper connects the test signal to the front panel AMPS jack. The test signal is routed through K103 (pins 3 and 8 to pins 4 and 7. The signal current then flows through the series combination of R205 (10) and R158 (0.1Ω) to ground. This generates an AC voltage that is connected to AMPSHNT through S101 and R142.

The ACV front end is set up for the non-inverting configuration as follows:
K102: /SETK1 low, /RESETK1 high
U103: Pins 8 and 9 low
U105: Pin 9 high
The AMPSHNT signal is routed through U105 (pin 16 low) to the plus input of U112 which is configured for $\times 10$ gain. The output signal of the op amp is routed through U105 (pin 1 low) and coupled across C115 to U118 which is configured for $\times 2$ gain.

The output of U118 goes to U110 the TRMS converter through R129 and the parallel C113 and C114. U110 OUT pin 11 is feed through its own internal buffer pin 1 to 16 and the signal out is AC_MED. AC_MED signal is selected at U163 pin 6 to 8 and fed to A/D buffer U166 through Q117. The A/ D buffer is set up for $\times 1$ gain through U129 pin 3 to 2 with $/ \times 1$ low. This test is the setup phase for the next test phase.

Bit patterns

Bit pattern				Register
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
110v0010	11011111	$\begin{aligned} & \text { 1v10110v } \\ & \text {-U130- } \end{aligned}$	10110000	MUX_STB
		1001101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 601.2 - AMP SHUNT

Bank
Inputs
Expected Value
Limits
Fault Message

AMP/OHM
INPUT HI to AMPS Short
0.084 volts
0.02 volts

AC AMP SHUNT
The previous test sets up the circuit for this test. There is a routine in software that generates a waveform for the ACV tests. This is done by selecting the 7 V reference by closing analog switch U133 (/7V controlline low). The reference is buffered by U123.

Control line OHMA line is high turning Q123 and Q125 on which generates a 1 mA current source with R195, op amp U123, Q119, and associated circuitry. The /LOWOHM control line of U133 is switched to toggle Q120 on and off to generate the 1 mA AC current to the OHM node.

This test current is then switched through K101 (pin 4 to 3). Control line /SETK2 is high and /RESETK2 is low. The test current goes through Q102, Q101, the parallel combination of R115, L109, and R324, then to the INPUT HI jack.

The switched current signal is applied to the circuit described in the previous test and a measurement is made. The input signal switching stops while the A / D is taking the reading, then continues when the measurement is complete. There are delays before the reading is taken to ensure that the ACV section and filters have enough time to reach a charged stable reading. For this test, the switched signal can be traced through the circuit described in the previous test. Measure 84 mV DC at A/D_IN.

Bit patterns

Bit pattern				R egister
Q Q	Q Q	Q Q	Q Q	
87654321	87654321	87654321	87654321	
-U106-	-U109-	-U134-	-U121-	ACDC_STB
101v0010	11011111	1v10110v	10110000	
		-U130-		MUX_STB
		10011101		
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4				

Test 601.3 - AMP SHUNT
Bank AMP/OHM

Inputs
Expected Value
Limits
Fault Message

D escription

INPUT HI to AMPS Short
<none specified>
<none specified>
<none>

This phase resets the circuit to a known state and turns the waveform signal off. Subsequent tests require that the A/D be in the normal operating mode.

Bit patterns

Bit pattern				R egister	
Q Q	Q Q	Q Q	Q Q		
87654321	87654321	87654321	87654321		
-U106-	-U109-	-U134-	-U121-	ACDC23	
101v0010	11011111	1v10110v	10110000	STB	
		-U130-			
		10011101		MUX_STB	
IC pins: Q8=11, Q7=12, Q6=13, Q5=14, Q4=7, Q3=6, Q2=5, Q1=4					

Disassembly

Introduction

This section explains how to handle, clean, and disassemble the Model 2000 Multimeter. This section is organized as follows:

- Handling and cleaning - Describes how to properly handle, clean, and solder PC boards.
- Static sensitive devices - Explains how to handle ICs and CMOS devices.
- Assembly drawings - Provides mechanical drawings to assist in the disassembly and re-assembly of the Model 2000.
- Case cover removal - Provides the procedure for removing the case to gain access to the internal components.
- Motherboard removal - Provides the procedure for removing the motherboard.
- Front panel disassembly - Provides the procedure for removing the display board and front panel switch pad.
- Firmware replacement - Provides the procedure for removing and replacing the Model 2000 firmware.
- Removing power components - Explains how to remove the power transformer and power module.
- Instrument re-assembly - Provides general guidelines for re-assembling the Model 2000.

Handling and cleaning

To avoid contaminating PC board traces with body oil or other foreign matter, avoid touching the PC board traces while you are repairing the instrument. Motherboard areas covered by the shield have high impedance devices or sensitive circuitry where contamination could cause degraded performance.

Handling PC boards

Observe the following precautions when handling PC boards:

- Wear cotton gloves.
- Only handle PC boards by the edges and shields.
- Do not touch any board traces or components not associated with repair.
- Do not touch areas adjacent to electrical contacts.
- Use dry nitrogen gas to clean dust off PC boards.

Solder repairs

Observe the following precautions when you must solder a circuit board:

- Use an OA-based (organic activated) flux, and take care not to spread the flux to other areas of the circuit board.
- Remove the flux from the work area when you have finished the repair by using pure water with clean, foam-tipped swabs or a clean, soft brush.
- Once you have removed the flux, only swab the repair area with methanol, then blow dry the board with dry nitrogen gas.
- After cleaning, allow the board to dry in a $50^{\circ} \mathrm{C}$, low-humidity environment for several hours.

Static sensitive devices

CMOS devices operate at very high impedance levels for low power levels. Therefore, any static that builds up on you or your clothing may be sufficient to destroy these devices if they are not handled properly. Use the following precautions to avoid damaging them:

CAUTION Many CMOS devices are installed in the Model 2000. Handle all semiconductor devices as static sensitive.

- Only transport and handle ICs in containers specially designed to prevent static build-up. Typically, you receive these parts in anti-static containers made of plastic or foam. Keep these devices in their original containers until ready for installation.
- Remove the devices from their protective containers only at a properly grounded work station. Also, ground yourself with a suitable wrist strap.
- Handle the devices only by the body; do not touch the pins.
- Also ground any printed circuit board into which a semiconductor device is to be inserted to the bench or table.
- Only use anti-static type solder sucker.
- Only use grounded tip solder irons.
- Once the device is installed in the PC board, it is normally adequately protected, and you can handle the boards normally.

Assembly drawings

Use the following assembly drawings to assist you as you disassemble and re-assemble the Model 2000. Also, refer to these drawings for information about the Keithley part numbers of most mechanical parts in the unit. The drawings are located at the end of this section of the manual.

- Front Panel Assembly - 2000-040
- Chassis/Transformer Power Module Assembly - 2000-050
- Front Panel/Chassis Assembly - 2000-051
- Chassis Assembly - 2000-052

Case cover removal

If you need to troubleshoot the instrument or replace a component, you must gain access to the components by removing the case.

WARNING Before removing the case cover, disconnect the line cord and any test leads from the instrument.

1. Remove Handle - The handle serves as an adjustable tilt-bail. Adjust its position by gently pulling it away from the sides of the instrument case and swinging it up or down. To remove the handle, swing the handle below the bottom surface of the case and back until the orientation arrows on the handles line up with the orientation arrows on the mounting ears. With the arrows lined up, pull the ends of the handle from the case.
2. Remove Mounting Ears - Remove the screw that secures each mounting ear. Pull down and out on each mounting ear.
NOTE When re-installing the mounting ears, make sure to mount the right ear to the right side of the chassis, and the left ear to the left side of the chassis. Each ear is marked "RIGHT" or "LEFT" on its inside surface.
3. Remove Rear Bezel - To remove the rear bezel, loosen the two captive screws that secure the rear bezel to the chassis. Pull the bezel away from the case.
4. Removing Grounding Screws - Remove the two grounding screws that secure the case to the chassis. They are located on the bottom of the case at the back.
5. Remove Chassis - To remove the case, grasp the front bezel of the instrument, and carefully slide the chassis forward. Slide the chassis out of the metal case.

NOTE If you need to gain access to the components under the motherboard shield to troubleshoot them, remove the shield. It is secured to the motherboard by a single screw.

Changing trigger link lines

The Model 2000 uses two lines of the Trigger Link rear panel connector as External Trigger (EXT TRIG) input and Voltmeter Complete (VMC) output. At the factory, line 1 is configured as VMC and line 2 as EXT TRIG.

NOTE Line 1, 3 or 5 of the Trigger Link can be configured as VMC, while line 2, 4 or 6 can be configured as EXT TRIG.

Trigger link line configurations are changed by moving the position of resistors inside the unit. Perform the following steps to change trigger link lines:

WARNING Make sure the instrument is disconnected from the power line and other equipment before performing the following procedure.

1. Remove the cover from the instrument as explained in "Case Cover Removal".

The resistors used to select the trigger link lines are located next to the Trigger Link connector as shown in Figure 3-1. The "resistors" are actually solder beads that bridge pcboard pads. If the factory default lines are selected, the solder beads will be located at R270 (line 2, EXT TRIG) and R267 (line 1, VMC).
2. To change a trigger link line:
A. Use a soldering iron and solder sucker to remove the appropriate solder bead.
B. Using a solder with OA-based flux, apply a solder bead to the appropriate resistor location.
3. Replace the cover on the instrument.

Figure 3-1
Trigger link line connections

M other Board
(View from top)

Motherboard removal

Perform the following steps to remove the motherboard. This procedure assumes that the case cover is already removed.

1. Remove the IEEE-488 and RS-232 fasteners.

The IEEE-488 and the RS-232 connectors each have two nuts that secure the connectors to the rear panel. Remove these nuts.
2. Remove the front/rear switch rod.

At the switch, place the edge of a flat-blade screw driver in the notch on the pushrod. Gently twist the screw driver while pulling the rod from the shaft.
3. Disconnect the front and rear input terminals.

You must disconnect these input terminal connections for both the front and rear inputs:

- INPUT HI and LO
- SENSE HI and LO
- AMPS

Remove all the connections except the front AMPS connection by pulling the wires off the pin connectors. To remove the front panel AMPS input wire (white), first remove the AMPS fuse holder, then use needle-nose pliers to grasp the AMP wire near fuse housing. Push the wire forward and down to snap the spring out of the fuse housing. Carefully pull the spring and contact tip out of housing.

During re-assembly, use the following table to identify input terminals:

	Front wire color	Rear wire color
INPUT HI	Red	White/Red
INPUT LO	Black	White/Black
SENSE HI	Yellow	White/Yellow
SENSE LO	Gray	White/Gray
AMPS	White	-

4. Unplug cables.
C. Unplug the display board ribbon cable from connector J1014.
D. Unplug the transformer cables from connectors J1016 and J1015.
E. Unplug the scanner board ribbon cable from connector J1017.
5. Remove the fastening screw that secures the main PC board to the chassis. This screw is located along the left side of the unit towards the rear. It also holds down U144.

During re-assembly, replace the board, and start the IEEE-488 and RS-232 connector nuts and the mounting screw. Tighten all the fasteners once they are all in place and the board is correctly aligned.
6. Remove the motherboard, which is held in place by edge guides on each side, by sliding it forward until the board edges clear the guides. Carefully pull the motherboard from the chassis.

Front panel disassembly

Use the following procedures to remove the display board and/or the pushbutton switch pad:
NOTE You must first remove the case cover, the front/rear input switch, and the front input terminal wires as described in earlier in this section.

1. Unplug the display board ribbon cable from connector J1014.
2. Remove the front panel assembly.

This assembly has four retaining clips that snap onto the chassis over four pem nut studs. Two retaining clips are located on each side of the front panel. Pull the retaining clips outward and, at the same time, pull the front panel assembly forward until it separates from the chassis.
3. Using a thin-bladed screw driver, pry the plastic PC board stop (located at the bottom of the display board) until the bar separates from the casing. Pull the display board from the front panel.
4. Remove the switch pad by pulling it from the front panel.

Main CPU firmware replacement

Changing the firmware may be necessary as upgrades become available. The firmware revision level for the main CPU is displayed during the power-on sequence. The firmware for the main CPU is located in the EPROMs U156 (EVEN) and U157 (ODD), leadless ICs that resides in chip carriers on the PC board.

To replace the CPU firmware, do the following:

WARNING Disconnect the instrument from the power lines and remove the test leads before changing the firmware.

1. Remove the case cover as described earlier in this section.
2. Locate U156 EVEN and U157 ODD (EPROMs) on the main PC board. They are the only devices installed in chip carriers (sockets).

CAUTION EPROMs U156 and U157 are static sensitive devices. Be sure to follow the handling precautions explained in the paragraph entitled "Static sensitive devices."
3. Using an appropriate chip extractor, remove U156 and U157 from its chip carrier.
4. Position the new U156 EPROM on the appropriate chip carrier. Make sure the notched corner of the chip is aligned with the notch in the chip carrier.
5. With the EPROM properly positioned, push down on the chip until it completely seats into the chip carrier.
6. Repeat steps 4 and 5 for EPROM U157.

Removing power components

The following procedures to remove the power transformer and/or power module require that the case cover and motherboard be removed, as previously explained.

Power transformer removal

Perform the following steps to remove the power transformer:

1. Remove motherboard.
2. Unplug the transformer wires that attach to the power module at the rear panel.

During re-assembly, use drawing 2000-050 as a reference and replace the wires as follows:

Top wire	Gray
Right top	Violet
Right bottom	White
Left top	Red
Left bottom	Blue

3. Remove the two nuts that secure the transformer to the bottom of the chassis.
4. Pull the black ground wire off the threaded stud and remove the power transformer from the chassis.

WARNING To avoid electrical shock, which could result in injury or death, the black ground wire of the transformer must be connected to chassis ground. When installing the power transformer, be sure to re-connect the black ground wire to the mounting stud on bottom of the chassis.

Power module removal

Perform the following steps to remove the power module:

1. Remove motherboard.
2. Unplug the transformer wires that attach to the power module at the rear panel.

During re-assembly, use drawing 2000-050 as a reference and replace the wires as follows:

Top wire	Gray
Right top	Violet
Right bottom	White
Left top	Red
Left bottom	Blue

3. Disconnect the power module's ground wire. This green and yellow wire connects to a threaded stud on the chassis with a kep nut.
4. Squeeze the latches on either side of the power module while pushing the module from the access hole.

WARNING To avoid electrical shock, which could result in injury or death, the ground wire of the power module must be connected to chassis ground. When installing the power module, be sure to re-connect the green and yellow ground wire to the threaded stud on the chassis.

Instrument re-assembly

Re-assemble the instrument by reversing the previous disassembly procedures. Make sure that all parts are properly seated and secured and that all connections are properly made. To ensure proper operation, replace and securely fasten the shield.

WARNING $\quad \begin{aligned} & \text { To ensure continued protection against electrical shock, verify that power line ground (green } \\ & \text { and yellow wire attached to the power module) and the power transformer ground (black } \\ & \text { wire) are connected to the chassis. }\end{aligned}$

LTR	ECA NO.	REVISION	ENG	DATE
D	26432	$2010-110 G$ Was 2000-250G	ST	$2 / 13102$
DI	27421	$2010-110 \mathrm{H}$ Was 2010-110G	ST	$7 / 8102$

STEP 2 3
010) 2010-IIOH,DISPLAY BOARD ASS'Y \quad 2001-37IA (2 REQ'D) SNAP TOP OF BOARD INTO FRONT PANEL.

USE T-7788

	-0002.0n
	A

\Rightarrow

DETAIL B transformer wiring

PART NO.	QTY	DESCRIPTION	
2000-050 2010-160B	$\frac{1}{1}$	CHASSIS / POWER MODULE ASSY CONNECTOR BOARD ASSEMBLY	A
CA-219-3A	1	CABLE ASSEMBLY	A
CC-38-2	1	CABLE CLAMP	A
$4-40 \times 3 / 8 \mathrm{PPH}$	1	PHIL PAN HEAD SCREW	A
$\frac{\text { TR-299B }}{4-40 \times 3 / 4 \mathrm{PPH}}$!	TRANSFORMER PHIL PAN HEAD SCREW	
2010-307A	1	SUPPORT BRACKET	
8LKWA	?	LOCKWASHER	

2010-160B CONNECTOR BOARD ASSEMB DRESS RIBBON CABLE UNDER BOTTOM DRESS RIB
TR WIRES.

LTR	ECA NO.	REV
F	26432	Add CA-219-3A, 4-40×3/ $2010-160 \mathrm{~B}$ Was 2000
FI	27216	Update Note For Ribbor
		CA-219-3A, CABLE ASSEMBLY

4-40×3/4PPH \qquad -4
$\left(2 \mathrm{REQ}^{\prime} \mathrm{D}\right)(4 \mathrm{IN}$ LBS $)$

8-32SMnut

2000	2000-052	Front Panel/Chassis Ass'y	I
MODEL	NEXT ASSEMBLY	NEXT PROCESS STEP	QTY
	USED	ON	
4 Scale χ	TITLE Cha	is/Transformer	
$\begin{array}{ll} \boldsymbol{l}_{\text {APPR }} & L S \\ \hline \end{array}$	Card	uide Assembly	
χ		NO.	

LTR	ECA NO.	REVISION	ENG	DATE
F	24919	REDRAWN	ST	$9 / 12 / 00$
FI	26432	Update Chassis View	ST	$2 / 13 / 02$
F2	27216	Add T-7801 - Detail A	ST	$5 / 16 / 02$

DETAIL A

TOP VIEW | PROPERLY INSTALLED |
| :--- |
| PUSH ROD |

PART NO.	QTY	DESCRIPTION
$2000-051$	I	CHASSIS / TRANSF ASSEMBLY
$2000-040$	I	FRONT PANEL ASSEMBLY

4 Replaceable Parts

Introduction

This section contains replacement parts information and component layout drawings for the Model 2000.

Parts list

The electrical parts lists for the Model 2000 are shown in Tables 4-1 to 4-3. For part numbers to the various mechanical parts and assemblies, use the Miscellaneous parts list and the assembly drawings provided at the end of Section 3.

O rdering information

To place an order, or to obtain information concerning replacement parts, contact your Keithley representative or the factory (see inside front cover for addresses). When ordering parts, be sure to include the following information:

- Instrument model number (Model 2000)
- Instrument serial number
- Part description
- Component designation (if applicable)
- Keithley part number

Factory service

If the instrument is to be returned to Keithley Instruments for repair, perform the following:

1. Call the Repair Department at 1-800-552-1115 for a Return Material Authorization (RMA) number.
2. Complete the service form at the back of this manual, and include it with the instrument.
3. Carefully pack the instrument in the original packing carton.
4. Write ATTENTION REPAIR DEPARTMENT and the RMA number on the shipping label.

Components layouts

The component layouts are provided in the following pages:
Motherboard: 2000-250, pages 1 and 2
Connector board: 2000-250, pages 1 and 2
Display board: 2000-250, pages 3 and 4

Table 4-1

Model 2000 connector board, parts list

C ircuit desig.	Description	K eithley part no.
C101	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
J1034	CONN, MALE RT ANGLE, 32-PIN	CS-456
P1017	CABLE ASSEMBLY	CA-123-14A
R196	RES, 2.21K, 1\%, 100MW, THICK FILM (0805)	R-418-2.21K

Table 4-2

Model 2000 display board, parts list

C ircuit desig.	D escription	K eithley part no.
	RFI CLIP, CHASSIS TAPE, 3/4 WIDE X 1/32 THICK	$\begin{aligned} & \hline 2001-366-1 \mathrm{~A} \\ & \mathrm{TP}-12-1 \end{aligned}$
C401,402,411	CAP,.1UF, 20\%,50V,CERAMIC(1206)	C-418-. 1
C403,404,405,407,409,410,412	CAP, .1UF, $10 \%, 25 \mathrm{~V}$, CERAMIC (0805)	C-495-. 1
C406,408	CAP, 33PF, $10 \%, 100 \mathrm{~V}$, CERAMIC (1206)	C-451-33P
C413	CAP,22UF, 20\%, 6.3,TANTALUM(C6032)	C-417-22
CR401,402	DIODE, MBR0520LT1(SOD-123)	RF-103
DS401	DISPLAY	DD-52
P1014	CABLE ASSEMBLY	CA-123-16A
R401,402,403,404,406,409,411	RES, $15 \mathrm{k}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-15K
R405,408,410,412	RES, $12.1,1 \%, 125 \mathrm{MW}$ METAL FILM(1206)	R-391-12.1
R413	RES, $13 \mathrm{~K}, 1 \%$, 100MW, THICK FILM(0805)	R-418-13K
R417,418	RES, $15 \mathrm{k}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-15K
R419	RES, $10 \mathrm{M}, 5 \%, 125 \mathrm{MW}$, METAL FILM(1206)	R-375-10M
R420,421	RES, 10K, $1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-10K
U401	PROGRAM	2000-800-**
U402,403	IC, LATCHED DRIVERS,UCN-5812EPF-1(PLCC)	IC-732
Y401	CRYSTAL, 4MHZ (SMT)	CR-36-4M

[^3]
Table 4-3

Model 2000 motherboard, parts list

C ircuit desig.	Description	K eithley part no.
	CONTACT, FUSE	$2001-314 \mathrm{~B}$
	CRIMP CONTACT ROUND	CS-760
	HEAT SINK FOR U124	HS-41
	SOCKET PLCC-032-T-A FOR U156,157	SO-143-32
	SPRING, COMPRESSION	SP-5
4-40X5/16 PHILLIPS PAN HD FOR IEEE CS TO BD	$4-40 \mathrm{X} 5 / 16 \mathrm{PPH}$	
AT101		
C101,160,163,174,180,186,207	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	IC-588
C102	CAP,.01UF,10\%,1000V,CERAMIC	C-495-.1
C104	CAP,100UF,20\%,63V,ALUM ELEC	C-64-.01
C105	CAP, .22UF, 20\%, 400V FILM	C-403-100
C106	CAP, 15P, 1\%, 100V CERAMIC (0805)	C-513-.22
C107	CAP,.1UF, 20\%,50V,CERAMIC(1206)	C-512-15P
C109	CAP, 2.2UF, 20\%, 63V, POLYCARB	C-418-.1
C112,248	CAP, .01, 5\%, 50V, NPO(1812)	C-580-2.2
C113,114,119,126,246,247	CAP, 1000P, 10\%, 100V, CERAMIC (1206)	C-451-1000P
C115	CAP, .33UF, 20\%, 63V, POLYCARBONATE	C-482-.33
C117,147,151,191,234,237	CAP,.1UF, 20\%,50V,CERAMIC(1206)	C-418-.1
C120	CAP, 270PF, 5\%, 100V, CERAMIC (0805)	C-465-270P
C121,132,134,140	CAP, 220PF, 10\%, 100V, CERAMIC (1206)	C-451-220P
C123,245	CAP, 1000P, 10\%, 100V, CERAMIC (1206)	C-451-1000P
C131,148	CAP, 1000UF, 20\%, 50V ALUM ELEC	C-469-1000
C135,203,198,183,187,197,249	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C137	CAP, 33PF, 5\%, 100V, CERAMIC (0805)	C-465-33P
C145	CAP, 1000pF, 20\%, 50V, CERAMIC (1206)	C-418-1000P
C146	CAP, 2200UF, 20\%, 16V ALUM ELEC	C-473-2200
C153,111,225,122,118,155,116	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C156	CAP, 6800UF, -20+100\%, 16V ALUMINUM	C-313-6800
C157,179	CAP,100PF, 5\%, 100V, CERAMIC(0805)	C-465-100P
C171,177	CAP, 2200P, 10\%, 100V CERAMIC	C-430-2200P
C175	CAP, 10UF,20\%, 25V, TANTALUM (D7243)	C-440-10
C178,167,172,169,161,103,128	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C194,182,199,200,136,233,232	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C204-206,190,173,139,138,162	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C209	CAP, 22UF, 20\%, 25V, TANTALUM (D7243)	C-440-22
C213,212,133,124,159,154,230	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C221,168,185	CAP, .1UF, 10\%, 25V, CERAMIC (0805)	C-495-.1
C222	CAP, 47P, 5\%, 100V, CERAMIC (0805)	C-465-47P
C224,141,158,150,176,219,220	CAP, 47P, 5\%, 100V, CERAMIC (0805)	C-465-47P

Table 4-3(cont.)
Model 2000 motherboard, parts list

C ircuit desig.	Description	K eithley part no.
C241	CAP, .01UF, 10\%, 50V CERAMIC(0805)	C-491-.01
C242,243	CAP, .01UF, 10\%, 50V CERAMIC(0805)	C-491-.01
C244	CAP, 1000pF, 20\%, 50V, CERAMIC (1206)	C-418-1000P
CR102,103	DIODE,BRIDGE,VM18	
CR104	DIODE,SILICON,W04M (CASE WM)	RF-52
CR105,108,114	DIODE, SWITCHING, MMBD914 (SOT-23)	RF-46
CR106	RIODE, BRIDGE PE05 (CASE KBU)	RF-48
CR110,CR118	DIODE, DUAL HSM-2822T31(S0T-23)	RF-95
CR111,112,115-117	DIODE, DUAL SWITCHING, BAV99L(SOT-23)	RF-82
E101,102	SURGE ARRESTOR, CG3-1.5L	SA-4
J1006	CONN, MICRODIN W/GND FINGERS	CS-792
J1007	CONN, RT ANGLE, MALE, 9 PIN	CS-761-9
J1008	CONN,RIGHT ANGLE,24 PIN	CS-501
J1014	CONN, HEADER STRAIGHT SOLDER PIN	CS-368-16
J1015	CONNECTOR, HEADER	CS-784-4
J1016	CONN, MALE, 5-PIN (MOLEX 42491)	CS-784-5
CONNECTOR, HEADER STRAIGHT SOLDER PIN	CS-368-14	
K102,101		
K103	RELAY, MINATURE (DPDT) TQ2E-L2-5V	RL-155
L101,103,102,104	RELAY, MINI SIGNAL REL	RL-163
L105,L106	FERRITE CHIP 600 OHM BLM32A07(1206)	CH-62
L107,108	FERRITE CHIP 600 OHM BLM32A07(1206)	CH-62
L109	CHOKE	CH-61
LS101	CHOKE	CH-63-22
Q101,102	BEEPER, 5V, 30MA, BRT1209P-06-C	EM-5
Q103,110,112,115,118,128,130	TRANS, C-CHAN MOSFET, 2SK1412(TO-220ML)	TG-276
Q104-109,113,114,117,120-126	TRANS, NPN, CHANBT3904 (SOT-23)	TG-238
Q119	TRANS,P CHANNEL JFET, SNJ132199(SOT-23)	TG-294
Q116,111,129	TRANS, PNP, MMBT3906L(SOT-23)	TG-166
Q127,131,132,133	TRANS, N-MOSFET, VN0605T (SOT-23)	TG-244
R101,102	RG-243	
R103,107,108,113,120,121,124	RES, 1M, 5\%, 125MW, METAL FILM (1206)	RES, 24K, 5\%, 1W, 200V, THICK FILM 251
R104,105	RES,549K,. .1\%,1/4W METAL FILM	R-375-1M
R106	RES,11K,.1\%,1/10W,METAL FILM	R-37-24K

Table 4-3(cont.)

Model 2000 motherboard, parts list

C ircuit desig.	D escription	K eithley part no.
R109	RES, $1 \mathrm{~K}, 1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-1K
R110,133	RES NET, 9K-1K, MICRO DIVIDER	TF-246-2
R114	RES, 604, 1\%, 100MW THICK FILM(0805)	R-418-604
R115	RES, $5 \mathrm{~K}, .1 \%$, WIREWOUND	R-249-5K
R117	RES NET, 100K, 9.9M, METAL FILM	TF-224
R122,134,272,181	RES, $1 \mathrm{~K}, 1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-1K
R123	RES, $73.2 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-73.2K
R127	RES, $33.2 \mathrm{~K}, 1 \%$, 100MW, THICK FILM (0805)	R-418-33.2K
R129	RES, $215,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-215
R135	RES, $33.2 \mathrm{~K}, 1 \%$, 100MW, THICK FILM (0805)	R-418-33.2K
R139,148,163	RES, 24K, 5\%, 1W, 200V, THICK FILM 2512	R-437-24K
R142	RES, $10,5 \%, 125 \mathrm{MW}, \mathrm{METAL}$ FILM(1206)	R-375-10
R145,156,321,322	RES, $100,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-100
R146	RES, $1.1 \mathrm{M}, 5 \%, 125 \mathrm{MW}$, METAL FILM (1206)	R-375-1.1M
R147	RES, $732 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-732K
R149,151	RES, $150,1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-150
R150	RES, $25.5 \mathrm{~K}, 1 \%$, 100MW, THICK FILM (0805)	R-418-25.5K
R152,143,137	RES, $49.9 \mathrm{~K}, 1 \%, 125 \mathrm{MW}$, METAL FILM (1206)	R-391-49.9K
R153	RES NET, 3.6K MICRO DIVIDER	TF-246-1
R154,230	RES, 49.9K, 1\%, 100MW THICK FILM(0805)	R-418-49.9K
R155	RES, $4.99 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$ THICK FILM(0805)	R-418-4.99K
R157	RES, $511,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-511
R158	RES, . $1,1 \%, 2 \mathrm{~W}, 4-\mathrm{TERMINAL}$ MOLDED	R-342-. 1
R159,166,185,275,307,314	RES, $475,1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-475
R164,112	RES, $100 \mathrm{~K}, 1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-100K
R168	RES, $270,5 \%, 250 \mathrm{~mW}$, METAL FILM (1210)	R-376-270
R169,214,218	RES, $4.99 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$ THICK FILM(0805)	R-418-4.99K
R172,167,160	RES, $1 \mathrm{M}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-1M
R176,179,183,186,193,130,177	RES, 100K, 1%, 100MW THICK FILM(0805)	R-418-100K
R178,184,187,161,213,257,248	RES, $100,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-100
R188	RES, $49.9,1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-49.9
R189	RES, $3.01 \mathrm{~K}, 1 \%, 125 \mathrm{MW}$, METAL FILM(1206)	R-391-3.01K
R192	RES, $6.98 \mathrm{~K}, 1 \%, 125 \mathrm{MW}$, METAL FILM(1206)	R-391-6.98K
R194	RESISTOR, METAL FILM	R-443-7.06K
R195	RESISTOR, METAL FILM	R-443-70.6K
R196	RES, $2.21 \mathrm{~K}, 1 \%$, 100MW, THICK FILM (0805)	R-418-2.21K
R200,190,165,182,111,284,296	RES, $1 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-1K
R201,204,223,229,231,233,206	RES, $4.75 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-4.75K
R202,263,249,224,319	RES, 10K, $1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-10K
R205	RES, $10, .5 \%, 1 / 8 \mathrm{~W}$, METAL FILM	R-246-10
R215	RES, $4.42 \mathrm{~K}, 1 \%, 125 \mathrm{MW}$ METAL FILM(1206)	R-391-4.42K
R216	RES, $2.21 \mathrm{~K}, 1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-2.21K

Table 4-3(cont.)
Model 2000 motherboard, parts list

C ircuit desig.	D escription	K eithley part no.
R220,221,264,212,217	RES, $2.21 \mathrm{~K}, 1 \%$, 100MW, THICK FILM (0805)	R-418-2.21K
R225	RES, 470,5\%, 125MW, METAL FILM(1206)	R-375-470
R226,228,235,237,250,252,255	RES, $475,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-475
R234	RES, $5.11 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-5.11K
R238,244,254,293	RES, $4.75 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-4.75K
R241	RES, $34 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-34K
R243,259	RES, $10,10 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-10
R245	RES, $475,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-475
R246	RES, $82.5,1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-82.5
R261	RES, $200,1 \%$, 100MW, THICK FILM (0805)	R-418-200
R267,270	RES, . $0499,1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-.0499
R271	RES NET (SOIC)	TF-245
R273,274	RES, $475,1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-475
R277	RES, $66.5 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-66.5K
R279,140,256,299	RES, $1 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-1K
R280,294	RES, 49.9, 1\%, 100MW THICK FILM(0805)	R-418-49.9
R283	RES, 470,5\%, 125MW, METAL FILM(1206)	R-375-470
R287	RES, $1.28 \mathrm{M}, .1 \%, 1 / 8 \mathrm{~W}$ METAL FILM	R-176-1.28M
R288,289,290	RES, $1 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-1K
R291,292	RES, $47.5 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$ THICK FILM (0805)	R-418-47.5K
R295,118,175,276,282,316	RES, 10K, $1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-10K
R297,278,281	RES, 357, 1%, 100MW, THICK FILM (0805)	R-418-357
R300	RES, $2.15 \mathrm{~K}, 1 \%$, 125MW THIN FILM (1206)	R-423-2.15K
R302,303	RES, 499, 1%, 100MW THICK FILM(0805)	R-418-499
R304	RES, 20K, 1\%, 100MW THICK FILM (0805)	R-418-20K
R309	RES, $1 \mathrm{~K}, .1 \%, 1 / 10 \mathrm{~W}, \mathrm{METAL}$ FILM	R-263-1K
R310	RES, $9.09 \mathrm{~K}, .1 \%, 1 / 10 \mathrm{~W}$, METAL FILM	R-263-9.09K
R311	RES, 392, 1\%, 100MW, THICK FILM (0805)	R-418-392
R312,313	RES, $332 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM (0805)	R-418-332K
R315	RES, 100K, 1%, 100MW THICK FILM(0805)	R-418-100K
R317,320	RES, $10,10 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-10
R318	RES, $73.2 \mathrm{~K}, 1 \%, 100 \mathrm{MW}$, THICK FILM(0805)	R-418-73.2K
R324	RES, $2 \mathrm{~K}, 1 \%, 125 \mathrm{~mW}$, METAL FILM (1206)	R-391-2K
S101	SWITCH, PUSHBUTTON, 8 POLE	SW-468
TP102,103,104,105,106	CONN,TEST POINT	CS-553
U101	INTEGRATED CIRCUIT	IC-846
U102,118	IC, J-FET, OP-AMP, TLE2081CD(SOIC)	IC-967
U103,105,111,129	IC,CMOS ANALOG SWITCH DG211DY(SOIC)	IC-768
U104	IC, MOSFET DRIVER, TLP591B	OC-877

Table 4-3(cont.)

Model 2000 motherboard, parts list

C ircuit desig.	D escription	K eithley part no.
U106,109,121,130,134	IC, 8 STAGE SHIFT/STORE,MC14094BD(SOIC)	IC-772
U107,108	IC, PHOTO, DARLINGTON TRANS, PS2506L-1	IC-911
U110	IC,TRMS TO DC CONVERTER, 637JR (SOLIC)	IC-796
U112	IC, J-FET OP-AMP LF357M(SOIC)	IC-966
U113	IC, OP-AMP, LTC1050CS8(SOIC)	IC-791
U114	ICM DUAL J-FET OP-AMP, OP-282GS,(SOIC)	IC-968
U116	IC, DARLINGTON ARRAY, ULN2003L (SOIC)	IC-969
U117,145	IC, VOLT. COMPARATOR,LM311M (SOIC)	IC-776
U119	IC,NEG VOLTAGE REG -15V,500MA,79M15	IC-195
U120,131,115	IC, QUAD COMPARATOR,LM339D (SOIC)	IC-774
U123	IC, DUAL PICOAMP OP-AMP AD706JR (SOIC)	IC-910
U124	IC,+5V REGULATOR,500mA,7805	IC-93
U125	IC,POS VOLTAGE REG +15V,500MA,7815	IC-194
U126	IC, OP-AMP, AD705JR(SOIC)	IC-814
U133	IC, CMOS ANAL SWITCH, DG444DY, (SOIC)	IC-866
U135	IC, 16BIT MICROPROCESSOR MC68306FC16	LSI-154
U136	IC, SERIAL EPROM 24LC16B(SOIC)	LSI-153
U137,166	IC, HI-SPEED BIFET OP-AMP, AD711JR(SOIC)	IC-894
U138,132	INTEGRATED CIRCUIT, OPA177GS(SOIC)	IC-960
U139	IC, DUAL BIPOLAR OP-AMP, LT1124C58	IC-955
U141	IC, PRECISION REFERENCE, LM399	196-600A
U142	IC, OP-AMP, NE5534D (SOIC)	IC-802
U144	IC, LOW DROPOUT REGULATOR, LM295T	IC-962
U146	IC,POS NAND GATES/INVERT,74HCT14(SOIC)	IC-656
U147,164	IC, DUAL D-TYPE F/F, 74HC74(SOIC)	IC-773
U148,153	IC, QUAD 2 IN NOR, 74HCT02 (SOIC)	IC-809
U149	IC, NCHAN LAT DMOS QUADFET,SD5400CY SOIC	IC-893
U150	IC,OPTOCOUPLER,2611	IC-690
U151,152	IC,32KX8 STAT CMOS RAM,D43256C(SOMETRIC)	LSI-93-100
U154	IC, QUAD D FLIP FLOP W/CLK,RESET 74HC175	IC-923
U155	IC,OPTOCOUPLER,2601	IC-239
U156	PROGRAM	2000-804-**
U157	PROGRAM	2000-803-**
U158	IC, GPIB ADAPTER, 9914A (PLCC)	LSI-123
U159	IC +5V RS-232 TRANSCEIVER, MAX202(SOIC)	IC-952
U160	IC,OCTAL INTER BUS TRANS,75161(SOLIC)	IC-647
U161	IC,OCTAL INTERFACE BUS,75160(SOLIC)	IC-646
U162	PROGRAM	2000-802-**
U163	IC, 8-CHAN ANA MULTIPLEXER,DG408DY(SOIC)	IC-844

Table 4-3(cont.)

Model 2000 motherboard, parts list

Circuit desig.	Description	K eithley part no.
VR101,114	VAR, 576V METAL OXIDE	VR-5
VR102	DIODE, ZENER 6.2V, BZX84B6V2 (SOT-23)	DZ-87
VR103,104	DIODE, ZENER, 6.8V,MMSZ5235BT1 (SOD-23)	DZ-100
VR105,106,115,116	DIODE, ZENER 11V,MMSZ11T1 (SOD-123)	DZ-103
VR107,108	DIODE, ZENER 3.3V, MMBZ5226BL(SOT-23)	DZ-94
VR109	DIODE, ZENER 17V, MMBZ5247BL (SOT-23)	DZ-104
VR110	DIODE,ZENER 5.1V, BZX84C5V1 (SOT-23)	DZ-88
VR112,113	DIODE, ZENER, 6.2V MMS26V2 SOD-123	DZ-97
Y101	CRYSTAL, 14.7456MHZ	CR-39
Y102	OSCILLATOR HIGH SPEED CMOS 12MHZ	CR-37

** Order present firmware revision.

Table 4-4

Model 2000 mechanical, parts list

D escription	K eithley part no.
2-56X5/8 PHILLIPS PAN HEAD SCREW SCANNER BOARD ASSEMBLY	2-56X5/8PPH
4-40X1/4 PHIL FLAT HD UNDERCUT SR WRAP TO CHASSIS	4-40X1/4PFHUC
4-40X5/16 PHILLIPS PAN HD SEMS MOTHER BOARD TO CHASSIS	4-40X5/16PPHSEM
6-32 KEP NUT SAFETY GROUND	6-32KEPNUT
6-32X1 PH PAN HD SEMS SCR FOR MOTHER BOARD SHIELD	6-32X1PPHSEM
6-32X1/4 PHIL. PAN HD SEMS CARD GUIDE TO CHASSIS	6-32X1/4PPHSEM
6-32X1/4 PHILLIPS FLAT HD FOR REAR FOOT	6-32X1/4PFH
8-32 SMALL NUT FOR TRANSFORMER MOUNTING	8-32SMNUT
\#8 INTERNAL TOOTH LOCKWASHER FOR TRANSFORMER MOUNTING	8LKWA

Table 4-4(cont.)

Model 2000 mechanical, parts list

D escription	K eithley part no.
BANANA JACK, PUSH-IN, BLACK	BJ-13-0
BANANA JACK, PUSH-IN, RED	BJ-13-2
BEZEL, REAR	$428-303 \mathrm{D}$
BRACKET, REAR PANEL SCANNER COVER PLATE	$2001-328 \mathrm{C}$
CABLE CLAMP FOR DISPLAY CABLE \& TR-299 WIRE	CC-37
CABLE CLAMP TIE WRAP, NYLON, 4" LONG FOR FRONT/REAR WIRES	CC-38-2
CAPTIVE PANEL SCREW FOR BEZEL	FA-232-1C
CARD GUIDE/SHIELD	$2000-311 \mathrm{~A}$
CHASSIS ASSEMBLY	$2000-309 \mathrm{D}$
CONNECTOR, HARDWARE KIT FOR IEEE	CS-713
COVER	$2000-307 \mathrm{C}$
DISPLAY LENS	$2000-304 \mathrm{~A}$
FASTENER FOR EARS	FA-230-2B
FOOT	$428-319 \mathrm{~A}$
FOOT, EXTRUDED	FE-22A
FOOT,RUBBER	FE-6
FRONT PANEL OVERLAY	$2000-303 \mathrm{~A}$
FRONT PANEL PRINTED	$2000-318 \mathrm{~B}$
FRONT/REAR SWITCH ROD	$2001-322 \mathrm{~A}$
FUSE HOLDER FOR PM-1-1	FH-35-1
FUSE, 3A, 250 FOR CURRENT INPUT JACK	FU-99-1
FUSE 0.25A FOR FH-35-1	FU-96-4
JACK, CURRENT INPUT	$2001-312 \mathrm{D}$
LINE MODULE	PM-1-1B
LUG	LU-130
LUG	LU-88
MOTHERBOARD SHIELD	$2000-306 B$
MOUNTING EAR, LEFT	$428-338 B$
MOUNTING EAR, RIGHT	$428-328 E$
PC BOARD STOP	$2001-371 \mathrm{~A}$
PLASTIC PLUG FOR SCANNER COVER PLATE	FA-240
POWER ROD	$2001-320 \mathrm{~A}$
SCREWLOCK, FEMALE FOR RS-232	CS-725
SWITCHPAD	$2000-310 \mathrm{~A}$
TRANSFORMER	TR-299B

Table 4-5

Model 2000 miscellaneous, parts list

D escription	K eithley part no.
CALIBRATION MANUAL PACKAGE	$2000-905-00$
COVER PANEL, SCANNER	$2001-372 \mathrm{~A}$
DISK PROGRAMMING	$2000-\mathrm{DSK}-81$
HANDLE	$428-329 \mathrm{~F}$
LINE CORD	CO-7
QUICK REFERENCE GUIDE PACKAGE	$2000-903-00$
TEST LEADS	CA-22
USER'S MANUAL PACKAGE	$2000-900-00$

A Specifications

2000 6½-Digit Multimeter

DC CHARACTERISTICS

CONDITIONS: MED (1 PLC) ${ }^{1}$ or SLOW (10 PLC) or MED (1 PLC) with filter of 10

ACCURACY: $\pm(\mathrm{ppm}$ of reading + ppm of range) (ppm = parts per million) (e.g., $10 \mathrm{ppm}=0.001 \%$)

FUNCTION	RANGE		$\begin{gathered} \text { RESO- } \\ \text { LUTION } \end{gathered}$	$\begin{aligned} & \text { TEST CURRENT } \\ & \text { OR BURDEN } \\ & \text { VOLTAGE (} \pm 5 \%) \end{aligned}$	INPUT RESISTANCE	$\begin{gathered} 24 \mathrm{HOUR}{ }^{14} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \end{gathered}$	$\begin{gathered} 90 \mathrm{DAY} \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} 1 \text { YEAR } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{aligned} & \text { TEMPERATURE } \\ & \text { COEFFICIENT } \\ & 0^{\circ}-18^{\circ} \mathrm{C} \& \\ & 28^{\circ}-50^{\circ} \mathrm{C} \end{aligned}$
Voltage	100.0000		$0.1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$30+30$	$40+35$	$50+35$	$2+6$
	1.000000	V	$1.0 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$15+6$	$25+7$	$30+7$	$2+1$
	10.00000	V	$10 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$15+4$	$20+5$	$30+5$	$2+1$
	100.0000	V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$30+6$	$45+6$	$5+1$
	1000.000	V^{9}	1 mV		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+6$	$45+6$	$5+1$
Resistance ${ }^{15}$	100.0000	Ω	$100 \mu \Omega$	1 mA		$30+30$	$80+40$	$100+40$	$8+6$
	1.000000	$\mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	1 mA		$20+6$	$80+10$	$100+10$	$8+1$
	10.00000	$\mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	100.0000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	1.000000	$\mathrm{M} \Omega^{16}$	1Ω	$10 \mu \mathrm{~A}$		$20+6$	$80+10$	$100+10$	$8+1$
	10.00000	$\mathrm{M} \Omega^{11,16}$	10Ω	$700 \mathrm{nA} \mathrm{//} 10$	$\mathrm{M} \Omega$	$150+6$	$200+10$	$400+10$	$70+1$
	100.0000	$\mathrm{M} \Omega^{11,16}$	100Ω	$700 \mathrm{nA} / / 10$	$\mathrm{M} \Omega$	$800+30$	$1500+30$	$1500+30$	$385+1$
Current	10.00000		10 nA	$<0.15 \mathrm{~V}$		$60+30$	$300+80$	$500+80$	$50+5$
	100.0000	mA	100 nA	$<0.03 \mathrm{~V}$		$100+300$	$300+800$	$500+800$	$50+50$
	1.000000	A	$1 \mu \mathrm{~A}$	$<0.3 \mathrm{~V}$		$200+30$	$500+80$	$800+80$	$50+5$
	3.00000	A	$10 \mu \mathrm{~A}$	$<1 \mathrm{~V}$		$1000+15$	$1200+40$	$1200+40$	$50+5$
Continuity 2W	$1 \mathrm{k} \Omega$		$100 \mathrm{~m} \Omega$	1 mA		$40+100$	$100+100$	$120+100$	$8+1$
Diode Test	3.00000	V	$10 \mu \mathrm{~V}$	1 mA		$20+6$	$30+7$	$40+7$	$8+1$
	10.00000	V	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~A}$		$20+6$	$30+7$	$40+7$	$8+1$
	10.00000	V	$10 \mu \mathrm{~V}$	$10 \mu \mathrm{~A}$		$20+6$	$30+7$	$40+7$	$8+1$

DC OPERATING CHARACTERISTICS ${ }^{2}$

FUNCTION	DIGITS	READINGS/s	PLCs ${ }^{8}$
DCV (all ranges),	$6^{1 / 2} 2^{3,4}$	5	10
DCI (all ranges), and	$6^{1 / 2} 2^{3,7}$	30	1
Ohms (<10M range)	$6^{1 / 2}{ }^{3,5}$	50	1
	$5^{1 / 2} 2^{3,5}$	270	0.1
	$51 / 2^{5}$	500	0.1
	$5^{1 / 2}{ }^{5}$	1000	0.04
	$4^{1 / 2}{ }^{5}$	2000	0.01

DC SYSTEM SPEEDS ${ }^{2,6}$

RANGE CHANGE ${ }^{3}$: 50/s.
FUNCTION CHANGE ${ }^{3}$: $45 / \mathrm{s}$.
AUTORANGE TIME ${ }^{3,10}:<30 \mathrm{~ms}$.
ASCII READINGS TO RS-232 (19.2K BAUD): 55/s.
MAX. INTERNAL TRIGGER RATE: 2000/s.
MAX. EXTERNAL TRIGGER RATE: 500/s.

DC GENERAL

LINEARITY OF 10VDC RANGE: \pm (2ppm of reading +1 ppm of range).
DCV, Ω, TEMPERATURE, CONTINUITY, DIODE TEST INPUT PROTECTION: 1000 V , all ranges.
MAXIMUM $4 W \Omega$ LEAD RESISTANCE: 10% of range per lead for 100Ω and $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
DC CURRENT INPUT PROTECTION: 3A, 250V fuse.
SHUNT RESISTOR: 0.1Ω for $3 \mathrm{~A}, 1 \mathrm{~A}$ and 100 mA ranges. 10Ω for 10 mA range.
CONTINUITY THRESHOLD: Adjustable 1Ω to 1000Ω.
AUTOZERO OFF ERROR: Add $\pm(2 \mathrm{ppm}$ of range error $+5 \mu \mathrm{~V}$) for <10 minutes and $\pm 1^{\circ} \mathrm{C}$ change.
OVERRANGE: 120% of range except on $1000 \mathrm{~V}, 3 \mathrm{~A}$ and Diode.

SPEED AND NOISE REJECTION

RATE	READINGS/S	DIGITS	RMS NOISE 10V RANGE	NMRR $^{\mathbf{1 2}}$	CMRR $^{\mathbf{1 3}}$
10 PLC	5	$61 / 2$	$<1.5 \mu \mathrm{~V}$	60 dB	140 dB
1 PLC	50	$61 / 2$	$<4 \mu \mathrm{~V}$	60 dB	140 dB
0.1 PLC	500	$51 / 2$	$<22 \mu \mathrm{~V}$	-	80 dB
0.01 PLC	2000	$41 / 2$	$<150 \mu \mathrm{~V}$	-	80 dB

DC Notes

${ }^{1}$ Add the following to "ppm of range" uncertainty: 1 V and $100 \mathrm{~V}, 2 \mathrm{ppm} ; 100 \mathrm{mV}, 15 \mathrm{ppm} ; 100 \Omega, 15 \mathrm{ppm} ;<1 \mathrm{M} \Omega$, $2 \mathrm{ppm} ; 10 \mathrm{~mA}$ and $1 \mathrm{~A}, 10 \mathrm{ppm} ; 100 \mathrm{~mA}, 40 \mathrm{ppm}$.
${ }^{2}$ Speeds are for 60 Hz operation using factory default operating conditions (*RST). Autorange off, Display off, Trigger delay $=0$.
${ }^{3}$ Speeds include measurement and binary data transfer out the GPIB.
${ }^{4}$ Auto zero off.
${ }^{5}$ Sample count $=1024$, auto zero off.
${ }^{6}$ Auto zero off, NPLC $=0.01$.
${ }^{7}$ Ohms $=24$ readings/second.
${ }^{8} 1$ PLC $=16.67 \mathrm{~ms} @ 60 \mathrm{~Hz}, 20 \mathrm{~ms} @ 50 \mathrm{~Hz} / 400 \mathrm{~Hz}$. The frequency is automatically determined at power up.
${ }^{9}$ For signal levels $>500 \mathrm{~V}$, add $0.02 \mathrm{ppm} / \mathrm{V}$ uncertainty for the portion exceeding 500 V .
${ }^{10}$ Add 120 ms for ohms.
${ }^{11}$ Must have 10% matching of lead resistance in Input HI and LO.
${ }^{12}$ For line frequency $\pm 0.1 \%$,
${ }^{13}$ For $1 \mathrm{k} \Omega$ unbalance in LO lead
${ }^{14}$ Relative to calibration accuracy.
${ }^{15}$ Specifications are for 4 -wire ohms. For 2-wire ohms, add 1Ω additional uncertainty.
${ }^{16}$ For rear inputs, add the following to Temperature Coefficient "ppm of reading" uncertainty: 10M Ω 70ppm, $100 \mathrm{M} \Omega 385 \mathrm{ppm}$. Operating environment specified for 0° to $50^{\circ} \mathrm{C}$ and $50 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.

2000 6½-Digit Multimeter

TRUE RMS ACVOLTAGE AND CURRENT CHARACTERISTICS

ACCURACY ${ }^{1}$: \pm (\% of reading + \% of range), $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$							
VOLTAGE RANGE	RESOLUTION	$\begin{aligned} & \text { CALIBRATION } \\ & \text { CYCLE } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~Hz}- \\ & 10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 20 \mathrm{kHz}- \\ & 50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 50 \mathrm{kHz}- \\ & 100 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 100 \mathrm{kHz}- \\ 300 \mathrm{kHz} \end{gathered}$
100.0000 mV	$0.1 \mu \mathrm{~V}$						
1.000000 V	$1.0 \mu \mathrm{~V}$	90 Days	$0.35+0.03$	$0.05+0.03$	$0.11+0.05$	$0.60+0.08$	$4+0.5$
10.00000 V	$10 \mu \mathrm{~V}$						
100.0000 V	$100 \mu \mathrm{~V}$	1 Year	$0.35+0.03$	$0.06+0.03$	$0.12+0.05$	$0.60+0.08$	$4+0.5$
$750.000 \mathrm{~V} \quad 1 \mathrm{mV}$							
		TEMPERATURE COEFFICIENT $/{ }^{\circ} \mathrm{C}^{8}$	$0.035+0.003$	$0.005+0.003$	$0.006+0.005$	$0.01+0.006$	$0.03+0.01$
CURRENT RANGE	RESOLUTION	CALIBRATION CYCLE	$\begin{aligned} & 3 \mathrm{~Hz}- \\ & 10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 5 \mathrm{kHz} \end{aligned}$			
1.000000 A	$1 \mu \mathrm{~A}$	90 Day/l Year	$0.30+0.04$	$0.10+0.04$			
$3.00000^{9} \mathrm{~A}$	$10 \mu \mathrm{~A}$	90 Day/1 Year	$0.35+0.06$	$0.15+0.06$			
		TEMPERATURE COEFFICIENT $/{ }^{\circ} \mathrm{C}^{8}$	$0.035+0.006$	$0.015+0.006$			

HIGH CREST FACTOR ADDITIONAL ERROR $\pm(\% \text { of reading })^{7}$

CREST FACTOR:	$1-2$	$2-3$	$3-4$	$4-5$
ADDITIONAL ERROR:	0.05	0.15	0.30	0.40

AC OPERATING CHARACTERISTICS ${ }^{2}$

FUNCTION	DIGITS	READINGS/s	RATE	BANDWIDTH
ACV (all ranges), and	$6^{1 / 2^{3}}$	2 s/reading	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
ACI (all ranges)	$61 / \mathbf{2}^{3}$	1.4	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	$61 / 2^{4}$	4.8	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	$61 / 2^{3}$	2.2	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
	$61 / 2^{4}$	35	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

ADDITIONAL LOW FREQUENCY ERRORS \pm (\% of reading)

| | SLOW | MED | FAST |
| ---: | :---: | :---: | :---: | :---: |
| $20 \mathrm{~Hz}-30 \mathrm{~Hz}$ | 0 | 0.3 | - |
| $30 \mathrm{~Hz}-\quad 50 \mathrm{~Hz}$ | 0 | 0 | - |
| $50 \mathrm{~Hz}-100 \mathrm{~Hz}$ | 0 | 0 | 1.0 |
| $100 \mathrm{~Hz}-200 \mathrm{~Hz}$ | 0 | 0 | 0.18 |
| $200 \mathrm{~Hz}-300 \mathrm{~Hz}$ | 0 | 0 | 0.10 |
| $>300 \mathrm{~Hz}$ | 0 | 0 | 0 |

AC SYSTEM SPEEDS ${ }^{2,5}$

FUNCTION/RANGE CHANGE ${ }^{6}$: 4/s.
AUTORANGE TIME: <3 s.
ASCII READINGS TO RS-232 (19.2k BAUD) ${ }^{4}: 50 / \mathrm{s}$.
MAX. INTERNAL TRIGGER RATE ${ }^{4}: 300 / \mathrm{s}$. MAX. EXTERNAL TRIGGER RATE ${ }^{4}$: $300 / \mathrm{s}$.

AC GENERAL

INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \%$ paralleled by $<100 \mathrm{pF}$. ACV INPUT PROTECTION: 1000Vp.
MAXIMUM DCV: 400 V on any ACV range.
ACI INPUT PROTECTION: 3A, 250V fuse.
BURDEN VOLTAGE: 1A Range: <0.3V rms. 3A Range: <lV rms.
SHUNT RESISTOR: 0.1Ω on all ACI ranges.
AC CMRR: $>70 \mathrm{~dB}$ with $1 \mathrm{k} \Omega$ in LO lead.
MAXIMUM CREST FACTOR: 5 at full scale.
VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$.
OVERRANGE: 120% of range except on 750 V and 3 A ranges.

AC Notes

${ }^{1}$ Specifications are for SLOW rate and sinewave inputs $>5 \%$ of range.
${ }^{2}$ Speeds are for 60 Hz operation using factory default operating conditions (*RST). Auto zero off, Auto range off, Display off, includes measurement and binary data transfer out the GPIB.
${ }^{3} 0.01 \%$ of step settling error. Trigger delay $=400 \mathrm{~ms}$.
${ }^{4}$ Trigger delay $=0$.
${ }^{5}$ DETector:BANDwidth 300, NPLC $=0.01$.
${ }^{6}$ Maximum useful limit with trigger delay $=175 \mathrm{~ms}$.
${ }^{7}$ Applies to non-sinewaves $>5 \mathrm{~Hz}$.
${ }^{8}$ Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$.
${ }^{9}$ For signal levels $>2.2 \mathrm{~A}$, add additional 0.4% to "of reading" uncertainty.

2000 6½-Digit Multimeter

FREQ	NCY A	PER	D	RACTE	STICS ${ }^{1,2}$
	FREQUENCY RANGE	PRRIOD RANGE	$\begin{gathered} \text { gatite } \\ \text { HiMe } \end{gathered}$	$\underset{\substack{\text { Resolution } \\ \pm \text { (ppm of }}}{\text { and }}$ reading)	ACCURACY 90 DAY/1 YEAR $\pm(\%$ of reading $)$
$\begin{gathered} \frac{0 \mathrm{mV}}{100} \\ 750 \mathrm{~V} \\ 750 \end{gathered}$	$\begin{gathered} 3 \mathrm{~Hz} \\ \text { Ho } \\ 500 \mathrm{kzz} \end{gathered}$	333 ms to $2 \mu \mathrm{~s}$	$\begin{gathered} 1 \mathrm{~s} \\ \text { (sLow) } \end{gathered}$	0.3	0.01

Frequency Notes

${ }^{1}$ Specifications are for squarewave inputs $>10 \%$ of ACV range, except 100 mV range. On 100 mV range frequency must be $>10 \mathrm{~Hz}$ if voltage is $<20 \mathrm{mV}$.
${ }^{2} 20 \%$ overrange on all ranges except 750 V range.

TEMPERATURE CHARACTERISTICS				
THERMOCOUPLE ${ }^{\text {,3,4 }}$		$90 \mathrm{DAY} / 1$ YEAR $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ ACCURACY ${ }^{1}$		
TYPE	RANGE	RESOLUTION	Relative to Reference Junction	$\begin{gathered} \text { Using }^{5} \\ \text { 2001-TCSCAN } \end{gathered}$
J	-200 to $+760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.65{ }^{\circ} \mathrm{C}$
K	-200 to $+1372^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.70^{\circ} \mathrm{C}$
T	-200 to $+400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$\pm 0.5^{\circ} \mathrm{C}$	$\pm 0.68{ }^{\circ} \mathrm{C}$

Temperature Notes

${ }^{1}$ For temperatures $<-100^{\circ} \mathrm{C}$, add $\pm 0.1^{\circ} \mathrm{C}$ and $>900^{\circ} \mathrm{C}$ add $\pm 0.3^{\circ} \mathrm{C}$.
${ }^{2}$ Temperature can be displayed in ${ }^{\circ} \mathrm{C}$, K or ${ }^{\circ} \mathrm{F}$.
${ }^{3}$ Accuracy based on ITS-90.
${ }^{4}$ Exclusive of thermocouple error.
${ }^{5}$ Specifications apply to channels 2 -6. Add $0.06^{\circ} \mathrm{C} /$ channel from channel 6 .

INTERNAL SCANNER SPEED ${ }^{4}$

MAXIMUM INTERNAL SCANNER RATES
RANGE: Channels/s ${ }^{1}$

TRIGGER DELAY $=0$				
DCV ${ }^{2}$	$\mathrm{ACV}^{2,3}$	2-WIRE OHMS ${ }^{2}$	4-WIRE OHMS ${ }^{2}$	TEMPERATURE ${ }^{2}$
All : 110	All : 100	All : 105	$<10 \mathrm{M} \Omega$: 33	All : 60
TRIGGER DELAY = AUTO				
DCV ${ }^{2}$	$\mathrm{ACV}^{2,3}$	2-WIRE OHMS ${ }^{2}$	$\begin{aligned} & \text { 4-WIRE } \\ & \text { OHMS }{ }^{2} \end{aligned}$	TEMPERATURE ${ }^{2}$
0.1 V : 105	All : 1.8	100Ω : 85	100Ω : 29	All : 60
1 V : 105		$1 \mathrm{k} \Omega: 85$	$1 \mathrm{k} \Omega$: 29	
10 V : 105		$10 \mathrm{k} \Omega: 42$	$10 \mathrm{k} \Omega: 22$	
100 V : 70		$100 \mathrm{k} \Omega$: 28	$100 \mathrm{k} \Omega$: 18	
1000 V : 70		$1 \mathrm{M} \Omega: 8$	$1 \mathrm{M} \Omega: 7$	
		$10 \mathrm{M} \Omega: 5$	$10 \mathrm{M} \Omega: 5$	
		$100 \mathrm{M} \Omega: 3$	$100 \mathrm{M} \Omega: 3$	

Internal Scanner Speed Notes

[^4]
TRIGGERING AND MEMORY

READING HOLD SENSITIVITY: $0.01 \%, 0.1 \%, 1 \%$, or 10% of reading. TRIGGER DELAY: 0 to 99 hrs (1 ms step size).
EXTERNAL TRIGGER LATENCY: $200 \mu \mathrm{~s}+<300 \mu \mathrm{~s}$ jitter with autozero off, trigger delay $=0$.
MEMORY: 1024 readings.

MATH FUNCTIONS

Rel, Min/Max/Average/StdDev (of stored reading), dB, dBm, Limit Test, \%, and $\mathrm{mX}+\mathrm{b}$ with user defined units displayed.
dBm REFERENCE RESISTANCES: 1 to 9999Ω in 1Ω increments.

STANDARD PROGRAMMING LANGUAGES

SCPI (Standard Commands for Programmable Instruments)
Keithley 196/199
Fluke 8840A. Fluke 8842A

REMOTE INTERFACE

GPIB (IEEE-488.1, IEEE-488.2) and RS-232C.

GENERAL

POWER SUPPLY: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V} \pm 10 \%$.
LINE FREQUENCY: 45 Hz to 66 Hz and 360 Hz to 440 Hz , automatically sensed at power-up.
POWER CONSUMPTION: 22 VA.
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 80% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
WARRANTY: 3 years.
EMC: Complies with European Union Directive 89/336/EEC,
EN61326-1.
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT II.
VIBRATION: MIL-PRF-28800F Class 3 Random.
WARMUP: 1 hour to rated accuracy.
DIMENSIONS: Rack Mounting: 89 mm high $\times 213 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$
deep ($3^{1 / 2}$ in $\times 83 / 8$ in $\times 14^{9 / 16} \mathrm{in}$).
Bench Configuration (with handle and feet): 104 mm high $\times 238 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep ($41 / 8$ in $\times 93 / 8$ in $\times 149 / 16 \mathrm{in}$).
NET WEIGHT: 2.9 kg (6.3 lbs).
SHIPPING WEIGHT: 5 kg (11 lbs).
VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$.
Specifications are subject to change without notice.

Index

A

AMPS fuse replacement 1-4
Analog signal switching states 2-13
Assembly drawings 3-4
B
Built-in Test documentation 2-22
Built-in Test overview 2-18
C
Case cover removal 3-5
Changing trigger link lines 3-6
Components layouts 4-3
D
Digital circuitry checks 2-12
Disassembly 3-1
Display board checks 2-11

F

Factory service 4-3
Front panel disassembly 3-8
Front panel tests 2-4
H
Handling and cleaning 3-3
I
Instrument re-assembly 3-12

M
Main CPU firmware replacement 3-9
Motherboard removal 3-7
0
Ordering information 4-2
P
Parts list 4-2
Power supply checks 2-11
Power-on test 2-3
Principles of operation 2-5
R
Removing power components 3-10
Repair considerations 2-3
Replaceable parts 4-1
Routine maintenance 1-1
S
Setting line voltage and replacing fuse 1-2
Specifications A-1
Static sensitive devices 3-4

T

Troubleshooting 2-1

Service Form

Model No.
SeriaNo.
Date

Name and Telephone No.

Company

List all control settings, describe problem and check boxes that apply to problem. \qquad

Intermittent	Analog output follows display	Particular range or function bad; specify
- IEEE failure	- Obvious problem on power-up	- Batteries and fuses are OK
- Front panel operational	- All ranges or functions are bad	- Checked all cables
Display or output (check one)		
\square Drifts	- Unable to zero	Unstable
\square Overload	\square Will not read applied input	
- Calibration only (attach any additional sheet	Certificate of calibration required as necessary)	- Data required

Show a block diagram of your measurement including all instruments connected (whether power is turned on or not). Also, describe signal source.

Where is the measurement being performed? (factory, controlled laboratory, out-of-doors, etc.) \qquad
What power line voltage is used? \qquad Ambient temperature? \qquad ${ }^{\circ} \mathrm{F}$
Relative humidity? \qquad Other? \qquad
Any additional information. (If special modifications have been made by the user, please describe.)

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

KEITHLEY

Keithley Instruments, Inc.		28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 1-888-KEITHLEY (534-8453) • www.keithley.com
Sales Offices:	BELGIUM:	Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw •02-363 $0040 \cdot$ Fax: 02/363 0064
	CHINA:	Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
	FINLAND:	Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 7508 10 • Fax: 09-25 105100
	FRANCE:	3, allée des Garays •91127 Palaiseau Cédex • 01-64 532020 • Fax: 01-60 117726
	GERMANY:	Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
	GREAT BRITAIN:	Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 01189297500 • Fax: 01189297519
	INDIA:	Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 • Fax: 91-80-509-1322
	ITALY:	Viale San Gimignano, 38 • 20146 Milano • 02-48 391601 • Fax: 02-48 302274
	JAPAN:	New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 Fax: 81-3-5733-7556
	KOREA:	2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838
	NETHERLANDS:	Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
	SWEDEN:	c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 16970 Solna • 08-509 04679 • Fax: 08-655 2610
	SWITZERLAND:	Kriesbachstrasse 4•8600 Dübendorf • 01-821 9444 Fax: 01-820 3081
	TAIWAN:	1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. •886-3-572-9077• Fax: 886-3-572-9031

[^0]: Revision A (Document Number 2000-902-01)
 May 1995

[^1]: *K101 and K102 reset states: Pin 8 switched to Pin 9
 Pin 3 switched to Pin 2
 K101 and K102 set states: Pin 8 switched to Pin 7
 Pin 3 switched to Pin 4

[^2]: *K101 set states: Pin 8 switched to Pin 7
 Pin 3 switched to Pin 4

[^3]: ** Order present firmware revision.

[^4]: ${ }^{1}$ Speeds are for 60 Hz operation using factory default operating conditions (*RST). Auto Zero off, Auto Range off, Display off, sample count $=1024$.
 ${ }^{2}$ NPLC $=0.01$.
 ${ }^{3}$ DETector:BANDwidth 300.
 ${ }^{4}$ 10-channel card specification. See individual card specifications for options other than 10 -channel card.

